233 Matrix

Time Limit: 10000/5000 MS (Java/Others)    Memory
Limit: 65536/65536 K (Java/Others)

Total Submission(s): 1399    Accepted Submission(s): 826

Problem Description
In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233333 ... in the same meaning. And here is the question: Suppose we have a matrix called 233 matrix. In the first line, it would be 233, 2333, 23333... (it means
a0,1 = 233,a0,2 = 2333,a0,3 = 23333...) Besides, in 233 matrix, we got ai,j = ai-1,j +ai,j-1( i,j ≠ 0). Now you have known a1,0,a2,0,...,an,0, could you tell
me an,m in the 233 matrix?
 
Input
There are multiple test cases. Please process till EOF.



For each case, the first line contains two postive integers n,m(n ≤ 10,m ≤ 109). The second line contains n integers, a1,0,a2,0,...,an,0(0 ≤ ai,0 < 231).
 
Output
For each case, output an,m mod 10000007.
 
Sample Input
1 1
1
2 2
0 0
3 7
23 47 16
 
Sample Output
234
2799
72937
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <queue>
#include <cmath>
#include <stack>
#define LL long long
using namespace std;
const long long MAXN = 15;
const long long mod = 10000007;
struct Matrix
{
long long mat[MAXN][MAXN], n;
Matrix(){memset(mat, 0, sizeof(mat));}
Matrix operator * (Matrix & rhs)
{
Matrix res; res.n = n;
for(long long i=1;i<=n;i++)
{
for(long long j=1;j<=n;j++)
{
for(long long k=1;k<=n;k++)
{
(res.mat[i][j] += (mat[i][k] * rhs.mat[k][j]) % mod) %= mod;
}
}
}
return res;
}
};
Matrix pow_mod(Matrix a, long long b)
{
Matrix res; res.n = a.n;
for(long long i=1;i<=a.n;i++) res.mat[i][i] = 1;
while(b)
{
if(b & 1) res = res * a;
a = a * a;
b >>= 1;
}
return res;
}
long long a[MAXN], n, m;
int main()
{
while(scanf("%I64d%I64d", &n, &m)!=EOF)
{
for(long long i=1;i<=n;i++) scanf("%I64d", &a[i]);
Matrix ans; ans.n = n + 2;
for(long long i=1;i<=n + 1;i++)
{
ans.mat[i][1] = 10;
for(long long j=2;j<=i;j++)
{
ans.mat[i][j] = 1;
}
}
for(long long i=1;i<=n+1;i++) ans.mat[n+2][i] = 0;
for(long long i=1;i<=n+2;i++) ans.mat[i][n+2] = 1;
ans = pow_mod(ans, m);
/* for(long long i=1;i<=n+2;i++)
{
for(long long j=1;j<=n+2;j++)
cout << ans.mat[i][j] << ' ';
cout <<endl;
}*/
a[0] = 23, a[n+1] = 3;
long long rs = 0;
for(long long i=1;i<=n+2;i++) (rs += a[i-1] * ans.mat[n+1][i]) %= mod;
printf("%I64d\n", rs);
}
return 0;
}

HDU 5015 233Matrix (构造矩阵)的更多相关文章

  1. HDU 5015 233 Matrix --矩阵快速幂

    题意:给出矩阵的第0行(233,2333,23333,...)和第0列a1,a2,...an(n<=10,m<=10^9),给出式子: A[i][j] = A[i-1][j] + A[i] ...

  2. HDU - 5015 233 Matrix (矩阵快速幂)

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...

  3. hdu 5015 233 Matrix(构造矩阵)

    http://acm.hdu.edu.cn/showproblem.php?pid=5015 由于是个二维的递推式,当时没有想到能够这样构造矩阵.从列上看,当前这一列都是由前一列递推得到.依据这一点来 ...

  4. hdu 5015 233矩阵快速幂

    http://acm.hdu.edu.cn/showproblem.php?pid=5015 需要构造一个 n+2 维的矩阵. 就是要增加一维去维护2333这样的序列. 可以发现 2333 = 233 ...

  5. HDU 3306 Another kind of Fibonacci ---构造矩阵***

    Another kind of Fibonacci Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  6. HDU 1757 A Simple Math Problem 【矩阵经典7 构造矩阵递推式】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=1757 A Simple Math Problem Time Limit: 3000/1000 MS (J ...

  7. HDU 5667 构造矩阵快速幂

    HDU 5667 构造矩阵快速幂 题目描述 解析 我们根据递推公式 设 则可得到Q的指数关系式 求Q构造矩阵 同时有公式 其中φ为欧拉函数,且当p为质数时有 代码 #include <cstdi ...

  8. Number Sequence(HDU 1005 构造矩阵 )

    Number Sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  9. hdu 5015 矩阵快速幂(可用作模板)

    转载:http://blog.csdn.net/wdcjdtc/article/details/39318847 之前各种犯傻 推了好久这个东西.. 后来灵关一闪  就搞定了.. 矩阵的题目,就是构造 ...

随机推荐

  1. Myeclipse2014安装&破解激活

    市场上很多JavaWeb的IDE比如Idea(听说用好开发效率会很高),eclipse(插件丰富还免费),但是对于初学者还是为了提高学习的效率(Myeclipse创建web项目的时候可以自动生成一些配 ...

  2. leetcode375 Guess Number Higher or Lower II

    思路: dp. https://leetcode.com/problems/guess-number-higher-or-lower-ii/discuss/ 实现: class Solution { ...

  3. Android Bitmap转换WebP图片导致损坏的分析及解决方案

    背景 作为移动领域所力推的图片格式,WebP图片在商业领域证明了其应有的价值.基于其他格式的横向对比,其在压缩性能表现,及还原度极为优秀,节省大量的带宽开销.基于可观的效益比,团队早前已开始磋商将当前 ...

  4. 第一次创建svn的项目的使用方法

    1.第一步.在服务器上创建svn项目,将开发人人员你的账号密码添加上去. 2.第二步.开始在本地创建一个文件夹,点文件夹,右键->tortoisSVN->repo-brower 填写svn ...

  5. struts2配置文件加载顺序

    struts2配置文件加载顺序: struts-default.xml/ struts-plugin.xml/ struts.xml/ struts.properties/ web.xml

  6. linux初步学习有感

    经过了一段时间对linux的接触,从最开始接触到的deepin到后来我最喜欢的KaliLinux,感受到了这个我曾经并不了解的操作系统的独特魅力. 我是到了大学才知道linux这个系统的,但是在小时候 ...

  7. 设置Python解析器

    如果同时安装了多个Python,如 Python2.7 和 Python3.7 .如果某些特殊原因(比如有些框架只能在Python2.7中使用),需要修改程序在 Python2.7 下运行,即可设置P ...

  8. stall and flow separation on airfoil or blade

    stall stall and flow separation Table of Contents 1. Stall and flow separation 1.1. Separation of Bo ...

  9. 关于一个css布局的小记录

    这里我们采用一种最简单的 方式,至少我目前认为最简单的方式,使用flex布局来实现 下面是html结构: <div class="box1"> <div clas ...

  10. Spring 获取当前activeProfile

    WebApplicationContext wac = WebApplicationContextUtils.getWebApplicationContext(getServletContext()) ...