numpy.random模块常用函数解析
numpy.random模块中常用函数解析
1. numpy.random.rand(d0, d1, ..., dn)
Create an array of the given shape and populate it with random samples from a uniform distribution over [0, 1)
按照给定形状产生一个多维数组,每个元素在0到1之间
注意: 这里定义数组形状时,不能采用tuple
import numpy as np
np.random.rand(2, 3)
array([[ 0.44590044, 0.36234046, 0.51609462],
[ 0.45733218, 0.80836224, 0.31628453]])
2. numpy.random.randn(d0, d1, ..., dn)
generates an array of shape (d0, d1, ..., dn), filled with random floats sampled from a univariate “normal” distribution of mean 0 and variance 1
按照给定形状产生一个多维数组,数组中的元素服从标准正态分布
若要产生服从N(mu, sigma^2)分布的样本, 使用sigma * np.random.randn(...) + mu
例如产生 2 * 4 samples from N(3, 6.25):
2.5 * np.random.randn(2, 4) + 3
array([[ 2.90478558, 6.05670578, 6.21539068, 3.3955507 ],
[ 0.11594363, 3.17433693, 5.35625762, 1.4824643 ]])
3. numpy.random.randint(low, high=None, size=None, dtype='l')
Return random integers from low (inclusive) to high (exclusive).
按照给定的形状和范围产生随机整数
np.random.randint(0, 10, size=(2, 4))
array([[2, 7, 2, 1],
[3, 2, 4, 1]])
4. numpy.random.random_integers(low, high=None, size=None)
Random integers of type np.int between low and high, inclusive.
np.random.random_integers(1, 10, size=(2, 5))
array([[ 3, 3, 8, 4, 5],
[ 2, 7, 8, 10, 2]])
5. numpy.random.random_sample(size=None)
6. numpy.random.random(size=None)
7. numpy.random.ranf(size=None)
8. numpy.random.sample(size=None)
Return random floats in the half-open interval [0.0, 1.0).
以上四种方式都是生成[0,1)之间的浮点数
To sample Unif[a, b), b > a multiply the output of random_sample by (b-a) and add a:
(b - a) * random_sample() + a
import numpy as np
print('random_sample:\n', np.random.random_sample((2, 3)))
print('random:\n', np.random.random((2, 3)))
print('ranf:\n', np.random.ranf((2, 3)))
print('sample:\n', np.random.sample((2, 3)))
random_sample:
[[ 0.87996593 0.2706701 0.42158973]
[ 0.91952234 0.99470239 0.07363656]]
random:
[[ 0.44572326 0.23595379 0.1061901 ]
[ 0.48362249 0.4270327 0.12281262]]
ranf:
[[ 0.07180002 0.25542854 0.55630057]
[ 0.38181471 0.91512916 0.04020929]]
sample:
[[ 0.80390231 0.0024602 0.95974309]
[ 0.32902852 0.62796713 0.42254831]]
9. numpy.random.choice(a, size = None, replace=True, p=None)
从给定的一维数组中生成随机数
如a是一个int数, 则产生的数组的元素都在np.arange(a)中
如a是一个1-D array-like, 则产生的数组的元素都在a中
print('1:\n', np.random.choice(5))
print('2:\n', np.random.choice(5, 2, p=[0.1, 0.4, 0.3, 0.1, 0.1]))
print('3:\n', np.random.choice(5, (2, 3)))
print('4:\n', np.random.choice([1, 3, 4, 6], (2, 5), p=[0.1, 0.3, 0.1, 0.5]))
1:
4
2:
[1 4]
3:
[[2 1 4]
[0 2 3]]
4:
[[3 6 1 6 1]
[3 3 3 3 1]]
10. numpy.random.seed(None)
设置相同的seed,每次生成的随机数相同。如果不设置seed,则每次会生成不同的随机数
np.random.seed(2)
np.random.rand(2, 3)
array([[ 0.4359949 , 0.02592623, 0.54966248],
[ 0.43532239, 0.4203678 , 0.33033482]])
np.random.seed(2)
np.random.rand(2, 3)
array([[ 0.4359949 , 0.02592623, 0.54966248],
[ 0.43532239, 0.4203678 , 0.33033482]])
np.random.rand(2, 3)
array([[ 0.20464863, 0.61927097, 0.29965467],
[ 0.26682728, 0.62113383, 0.52914209]])
numpy.random模块常用函数解析的更多相关文章
- python重要的第三方库pandas模块常用函数解析之DataFrame
pandas模块常用函数解析之DataFrame 关注公众号"轻松学编程"了解更多. 以下命令都是在浏览器中输入. cmd命令窗口输入:jupyter notebook 打开浏览器 ...
- pandas模块常用函数解析之Series(详解)
pandas模块常用函数解析之Series 关注公众号"轻松学编程"了解更多. 以下命令都是在浏览器中输入. cmd命令窗口输入:jupyter notebook 打开浏览器输入网 ...
- random模块常用函数
random模块常用函数: from random import * # Random float: 0.0 <= x < 1.0 random() # Random float: 2.5 ...
- numpy.random之常用函数
在实际开发中,我们经常会使用随机函数,比如交叉验证,构造测试数据等.下面,是我常用的几个生成随机样本的函数: 1,rand(n1,n2,…,nn) 每一维度都是[0.0,1.0)半闭半开区间上的随机分 ...
- numpy模块常用函数解析
https://blog.csdn.net/lm_is_dc/article/details/81098805 numpy模块以下命令都是在浏览器中输入. cmd命令窗口输入:jupyter note ...
- 操作 numpy 数组的常用函数
操作 numpy 数组的常用函数 where 使用 where 函数能将索引掩码转换成索引位置: indices = where(mask) indices => (array([11, 12, ...
- AR模块常用函数
--AR模块常用函数 FUNCTION get_fnd_user_name ( p_user_id IN NUMBER ) return VARCHAR2 IS CURSOR c_user_name ...
- $python正则表达式系列(2)——re模块常用函数
本文主要介绍正则re模块的常用函数. 1. 编译正则 import re p = re.compile(r'ab*') print '[Output]' print type(p) print p p ...
- numpy.random模块用法小结
原文作者:aircraft 原文链接:https://www.cnblogs.com/DOMLX/p/9751471.html 1.np.random.random()函数参数 np.random.r ...
随机推荐
- UVA 213 Message Decoding 【模拟】
题目链接: https://cn.vjudge.net/problem/UVA-213 https://uva.onlinejudge.org/index.php?option=com_onlinej ...
- HDU 5976 Detachment 【贪心】 (2016ACM/ICPC亚洲区大连站)
Detachment Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total ...
- JavaScript倒计时类
(function (){ var jtimer = function() { // init if(arguments.length >= 1) { this.setEndTime(argum ...
- [RK3288][Android6.0] 系统按键驱动流程分析【转】
本文转载自:http://blog.csdn.net/kris_fei/article/details/77894406 Rockchip的按键驱动位于 kernel/drivers/input/ke ...
- 【转载】HTTP协议详解
[本文转自]http://www.cnblogs.com/EricaMIN1987_IT/p/3837436.html 一.概念 协议是指计算机通信网络中两台计算机之间进行通信所必须共同遵守的规定或规 ...
- PCB Genesis加邮票孔(弧与弧)实现算法
一.Genesis加邮票孔(弧与弧)实现算法 1.鼠标点击位置P点(可以确认搜索区域位置,确认点击位置周边元素分区,此所讲算法未应用到P点坐标) 2.求出:P1C与P2C (线与弧最近点距离的2个点) ...
- oracle创建默认表空间---重要
当oracle创建数据库后,sys创建用户时还要有默认表空间.不创建默认表空间在导如项目时会有些数据表导入不成功! 由于时间仓促以截屏为例 之后会在刚刚那个空文件生成一个文件 ----------- ...
- redis之简单动态字符串(SDS)
O(N):时间复杂度 N的值越大 时间复杂度随N的平方增大 O(1):就是说N很大的时候,复杂度基本不增长了.基本就是常量了. 在Redis数据库里 包含字符串值的键值对 在底层都是由SDS实现的. ...
- 解决前后端分离的“两次请求”引出的Web服务器跨域请求访问问题的解决方案
在前后端分离的项目中,前端和后端可能是在不同的服务器上,也可以是Docker上,那就意味着前端请求后端Restful接口时,存在跨域情况. 后端在做了通用的跨域资源共享CORS设置后,前端在做ajax ...
- php pdo oracle
<?php/** * Created by mestars. * User: mestars * Date: 6/13/16 * Time: 10:52 PM */header('Access- ...