求出每个数i可以被转移到的数目$f[i]$,则点$(i,j)$中的金子数目为$f[i]*f[j]$,我们就可以用优先队列求解前$k$大。

首先所有的积数目在$10^4$左右,可以先Dfs搜索出所有的数值,然后离散化。

设$f[i][j][k]$表示i位数,积为$j$(离散),当前枚举位是否小于$n$的第$i$位,枚举第$i+1$位数转移即可。

  $f[i][j][k] \longrightarrow f[i+1][num[j]*x][(k+x)>a[i+1]]$

  用$g[i]$表示乘积$i$的种类数

  【学习】http://www.cnblogs.com/lidaxin/p/5234975.html

 #include <bits/stdc++.h>

 using namespace std;

 const long long MOD=1e9+;

 long long    a[],Len;
long long f[][][],g[];
long long n,K;
vector<long long> vec; struct cmp
{
bool operator()(const pair<long long,long long> temp1,
const pair<long long,long long> temp2)
{
return (long long)g[temp1.first]*g[temp1.second]<
(long long)g[temp2.first]*g[temp2.second];
}
}; void Init()
{ long long temp=n; while(temp) { a[++Len]=temp%; temp/=; } return ; } void Dfs(const long long cur,const long long step,const long long mul)
{
vec.push_back(mul); if(step==Len)return ;
for(long long i=cur;i<=;++i) Dfs(i,step+,mul*i);
return ;
} int main()
{
scanf("%lld%lld",&n,&K); //INIT mul->vec_____________________________________________________
Init(); Dfs(,,);
//------------------------------------------------------------------ vec.push_back(); sort(vec.begin(),vec.end());
vec.erase(unique(vec.begin(),vec.end()),vec.end()); //Dp start Hear_____________________________________________________
f[][][]=;
for(long long i=;i<=Len;++i)
for(long long j=;j<(long long)vec.size();++j)
for(long long k=;k<=;++k)
{
if(f[i][j][k]) for(long long x=i==?:;x<=;++x)
//Zero is allowed at the beginning only if len=1
{
long long temp=
lower_bound(vec.begin(),vec.end(),vec[j]*x)-
vec.begin();
f[i+][temp][(k+x)>a[i+]]+=f[i][j][k];
}
}
//------------------------------------------------------------------ //Calc g[i]_________________________________________________________
for(long long i=;i<(long long)vec.size();++i)
{
for(long long j=;j<=Len-;++j)
g[i]+=f[j][i][]+f[j][i][]; g[i]+=f[Len][i][]; //Not to exceed N
}
//------------------------------------------------------------------ //Get_Ans_with_Priority_Queue_______________________________________
long long Ans=; typedef pair<long long,long long> PII;
priority_queue<PII,vector<PII>,cmp>Q; sort(g,g+vec.size(),greater<long long>());
Q.push(make_pair(,)); while(!Q.empty() && K)
{
pair<long long,long long> t=Q.top(); Q.pop(); Ans=(Ans+g[t.first]*g[t.second])%MOD;
if(!(--K)) break; if(t.first!=t.second)
{
Ans=(Ans+g[t.first]*g[t.second])%MOD; if(!(--K)) break;
Q.push(make_pair(t.first+,t.second));
} if(t.first==) Q.push(make_pair(t.first,t.second+));//QAQ
}
//------------------------------------------------------------------ printf("%lld\n",Ans);
return ;
}

[bzoj3131]淘金[sdoi2013][数位DP]的更多相关文章

  1. [Bzoj3131][Sdoi2013]淘金(数位dp)(优先队列)

    3131: [Sdoi2013]淘金 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 847  Solved: 423[Submit][Status][ ...

  2. bzoj 3131 [Sdoi2013]淘金(数位DP+优先队列)

    Description 小Z在玩一个叫做<淘金者>的游戏.游戏的世界是一个二维坐标.X轴.Y轴坐标范围均为1..N.初始的时候,所有的整数坐标点上均有一块金子,共N*N块.    一阵风吹 ...

  3. bzoj 3131 [Sdoi2013]淘金(数位dp)

    题目描述 小Z在玩一个叫做<淘金者>的游戏.游戏的世界是一个二维坐标.X轴.Y轴坐标范围均为1..N.初始的时候,所有的整数坐标点上均有一块金子,共N*N块. 一阵风吹过,金子的位置发生了 ...

  4. [您有新的未分配科技点]数位DP:从板子到基础(例题 bzoj1026 windy数 bzoj3131 淘金)

    只会统计数位个数或者某种”符合简单规律”的数并不够……我们需要更多的套路和应用 数位dp中常用的思想是“分类讨论”思想.下面我们就看一道典型的分类讨论例题 1026: [SCOI2009]windy数 ...

  5. BZOJ 3131 [SDOI2013]淘金 - 数位DP

    传送门 Solution 这道数位$DP$看的我很懵逼啊... 首先我们肯定要先预处理出 $12$位乘起来的所有的可能情况, 记录入数组 $b$, 发现个数并不多, 仅$1e4$不到. 然后我们考虑算 ...

  6. [SDOI2013]淘金 数位DP

    做了好久.... 大致思路: 求出前k大的方格之和即为答案, 先考虑一维的情况,设f[i]为数位上各个数相乘为i的数的总数,也就是对于数i,有f[i]个数它们各个位相乘为i, 再拓展到二维,根据乘法原 ...

  7. 数位DP学习笔记

    数位DP学习笔记 什么是数位DP? 数位DP比较经典的题目是在数字Li和Ri之间求有多少个满足X性质的数,显然对于所有的题目都可以这样得到一些暴力的分数 我们称之为朴素算法: for(int i=l_ ...

  8. 数位DP复习小结

    转载请注明原文地址http://www.cnblogs.com/LadyLex/p/8490222.html 之前学数位dp的时候底子没打扎实 虚的要死 这次正好有时间……刷了刷之前没做的题目 感觉自 ...

  9. 数位dp从会打模板到不会打模板

    打了几个数位$dp$,发现自己除了会打模板之外没有任何长进,遇到非模板题依然什么都不会 那么接下来这篇文章将介绍如何打模板(滑稽) 假设我们要处理$l----r$ 采用记忆化搜索的方式,枚举$< ...

随机推荐

  1. [App Store Connect帮助]三、管理 App 和版本(6.3)转让 App:发起 App 转让

    在发起前,您需要接收者组织中“帐户持有人”的 Apple ID,并且满足 App 转让的条件.请前往 App 转让条件. 注:App 转让完成后,该 App 会从您的帐户中移除,因此,您应当备份该 A ...

  2. Androidstudio的安装与使用调试

    1安装与基本使用 1.1androidstudio的安装 1.到android-studio\bin文件夹里面,根据自己的电脑配置,打开studio.exe或者studio64.exe 2.按照向导默 ...

  3. ACM_括号匹配

    括号匹配(栈) Time Limit: 2000/1000ms (Java/Others) Problem Description: 给一组包含[]()两种括号的序列,检查是否是合法的. 如:()[] ...

  4. The Chosen One

    https://www.hackerrank.com/contests/101hack45/challenges/the-chosen-one 找出一个数字,使得,数组中只有一个数字不是这个数的约数, ...

  5. centos 7 中防火墙的关闭问题

    新安装的centos 7 发现有些程序端口是关闭的,想到了防火墙和selinux  selinx 好关闭 /etc/sysconfig/selinux 中 追加 SELINUX=disabled 防火 ...

  6. vs2012 jsoncpp 链接错误

    解决: 项目->属性->C/C++->代码生成->运行库->设置与使用的.lib的版本一致.

  7. Django--2、form表单

    django中定义form表单的优势 HTML中提交后,若数据出现错误,返回的页面中仍然可以保留之前输入的数据. 通过校验规则可以方便的限制字段条件并校验. 在Django中建个form表单 先要确定 ...

  8. web测试--登录界面怎么测?

    具体需求: 有一个登陆页面, 上面有2个textbox, 一个提交按钮.  请针对这个页面设计30个以上的测试用例. 此题的考察目的: 面试者是否熟悉各种测试方法,是否有丰富的Web测试经验, 是否了 ...

  9. 并发编程学习笔记(6)----公平锁和ReentrantReadWriteLock使用及原理

    (一)公平锁 1.什么是公平锁? 公平锁指的是在某个线程释放锁之后,等待的线程获取锁的策略是以请求获取锁的时间为标准的,即使先请求获取锁的线程先拿到锁. 2.在java中的实现? 在java的并发包中 ...

  10. docker在ubuntu16.04下的安装及阿里云镜像的配置

    1.获取最新版本的 Docker 安装包 anmin@ubuntu:~$ wget -qO- https://get.docker.com/ | sh 安装完成后有个提示: If you would ...