华为OJ2288-合唱队(最长递增子序列)
一、题目描述
描述:
N位同学站成一排,音乐老师要请其中的(N-K)位同学出列,使得剩下的K位同学不交换位置就能排成合唱队形。 
合唱队形是指这样的一种队形:设K位同学从左到右依次编号为1, 2, …, K,他们的身高分别为T1, T2, …, TK,则他们的身高满足T1 < T2 < … < Ti , Ti > Ti+1 > … > TK (1 <= i <= K) 。 
你的任务是,已知所有N位同学的身高,计算最少需要几位同学出列,可以使得剩下的同学排成合唱队形。
输入:
第一行整数 N,表示同学的总数 
第二行整数数组,空格隔开,表示 N 位同学身高
输出:
最少需要几位同学出列
样例输入:
8
186 186 150 200 160 130 197 200
样例输出:
4
二、最长递增子序列
最长递增子序列(Longest Increasing Subsequence)是指找到一个给定序列的最长子序列的长度,使得子序列中的所有元素单调递增。
例如:{ 3,5,7,1,2,8 } 的 LIS 是 { 3,5,7,8 },长度为 4。
解法一:转化为求最长公共子序列
其实可以把 求最长递增子序列问题 转化为 求最长公共子序列的问题。
- 设数组 { 3, 5, 7, 1, 2, 8 } 为 A
 - 对数组 A 排序,排序后的数组为 B = { 1, 2, 3, 5, 7, 8 }。
 - 于是,求数组 A 的最长递增子序列,就是求数组 A 与数组 B 的最长公共子序列。
 
最长公共子序列的求法见《动态规划DP》。本方法的时间复杂度是
解法二:动态规划法
虽然解法一也是使用动态规划,但是与解法一不同的是,解法二不进行转化,而是直接在原问题上采用动态规划法。
最优子结构:
对于长度为 N 的数组 A[N]={a0,a1,a2,…,an−1},假设我们想求以 ai 结尾的最大递增子序列长度,设为L[i],那么
也就是 j 的范围是 0 到 i–1。这样,想求 ai 结尾的最大递增子序列的长度,我们就需要遍历 i 之前的所有位置 j(0到 i-1),找出A[j]<A[i],计算这些 j 中,能产生最大 L[j] 的 j,之后就可以求出 L[i]。之后对每一个A[N]中的元素都计算以他们各自结尾的最大递增子序列的长度,这些长度的最大值,就是我们要求的问题——数组A的最大递增子序列的长度。
重叠子问题:
根据上述推导式采用递归实现的话,有些子问题会被计算很多次。
动态规划法:
综上所述,LIS 问题具有动态规划需要的两个性质,可以使用动态规划求解该问题。设数组 A = { 3,5,7,1,2,8 },则:
具体的打表方式如下:
- 初始化对角线为 1;
 - 对每一个 i,遍历 j(0 到 i-1): 
- 若
A[i] <= A[j],置 1。 - 若
A[i] > A[j],取第 j 行的最大值加 1。 
 - 若
 
打完表以后,最后一行的最大值就是最长递增子序列的长度。由于每次都进行遍历,故时间复杂度还是 Θ(n2) 。
通常在实现的时候我们不会创建一整个表,因为这样太浪费空间。由打表的过程可知,我们只需要一个一维数组来保存每一行的最大值即可:
// LIS 的动态规划方式实现
#include <iostream>
using namespace std;
int getLISLength(int A[], int len)
{
    /* 一维数组 */
   int* lis = new int[len];  
   /* 初始化为1 */
   for (int i = 0; i < len; ++i)
      lis[i] = 1;
   /* 计算每个i对应的lis最大值,即打表的过程 */
   for (int i = 1; i < len; ++i)
      for (int j = 0; j < i; ++j)     // 0到i-1
         if ( A[i] > A[j] && lis[i] < lis[j]+1)
            lis[i] = lis[j] + 1;  // 更新
   /* 数组中最大的那个,就是最长递增子序列的长度 */
   int maxlis = 0;
   for (int i = 0; i < len; ++i)
      if ( maxlis < lis[i] )
         maxlis = lis[i];
   delete [] lis;
   return maxlis;
}
int main()
{
  int arr[] = {3, 5, 7, 1, 2, 8};
  cout << getLISLength(arr, 6) << endl;
  return 0;
}
解法三:Θ(nlgn)的方案
本解法的具体操作如下:
- 开一个栈,依次读取数组元素 x 与栈顶元素 top:
- 如果 x > top,将 x 入栈;
 - 如果 x < top,则二分查找栈中第一个 大于等于x 的数,并用 x 替换它。
 
 
遍历结束之后,最长递增序列长度即为栈的大小。
int getLISLength(int A[], int len)
{
    vector<int> v;  // 模拟栈
    for(int i=0; i<len; ++i)
    {
        if(v.size()==0 || v.back()<A[i])
            v.push_back(A[i]);
        else  // 二分查找
        {
            int mid, low=0, high=v.size()-1;
            while(low<high)
            {
                mid = (low+high)/2;
                if(v[mid] < A[i])
                    low = mid + 1;
                else
                    high = mid - 1;
            }
            v[low] = A[i];  // 替换
        }
    }
    return v.size();
}
由于使用了二分搜索,故时间复杂度变成了 Θ(nlgn)。
特别注意的是:本方法只能用于求最长递增子序列的长度,千万不要以为栈中的序列就是最长递增子序列:
例一:原序列为1,5,8,3,6,7
栈为1,5,8,此时读到3,用3替换5,得到1,3,8; 再读6,用6替换8,得到1,3,6;再读7,得到最终栈为1,3,6,7。最长递增子序列为长度4。例二:原序列为1,5,8,3
则最终栈为1,3,8。明显这不是最长递增子序列!
三、解题报告
根据题意可知,我们需要求出一个“中间点”,使得其左边的【最长递增子序列】和其右边的【最长递减子序列】之和最大。
#include <iostream>
using namespace std;
int main()
{
    int len;
    cin >> len;
    int *A = new int[len];
    for(int i=0; i<len; ++i)
        cin >> A[i];
    // lis[i]表示以A[i]为结尾的最长递增子序列的长度
    int *lis = new int[len];
    // lds[i]表示以A[i]为起点的最长递减子序列的长度
    int *lds = new int[len];
    for (int i = 0; i < len; ++i)
    {
        lis[i] = 1;
        lds[i] = 1;
    }
    for(int i=1; i<len; ++i)
        for(int j=0; j<i; ++j)
            if(A[i] > A[j] && lis[i] < lis[j]+1)
                lis[i] = lis[j] + 1;
    for(int i=len-2; i>=0; --i)
        for(int j=len-1; j>i; --j)
            if(A[i] > A[j] && lds[i] < lds[j]+1)
                lds[i] = lds[j] + 1;
    int maxl = 0;
    for(int i=0; i<len; ++i)
        if(maxl < lis[i]+lds[i])
            maxl = lis[i] + lds[i];
    cout << len - maxl + 1 << endl;
    delete [] lis;
    delete [] lds;
    delete [] A;
    return 0;
}
华为OJ2288-合唱队(最长递增子序列)的更多相关文章
- (转载)最长递增子序列 O(NlogN)算法
		
原博文:传送门 最长递增子序列(Longest Increasing Subsequence) 下面我们简记为 LIS. 定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则 ...
 - 最长公共子序列(LCS)和最长递增子序列(LIS)的求解
		
一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个 ...
 - 最长递增子序列 O(NlogN)算法
		
转自:点击打开链接 最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS. 排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了. 假设存在一个 ...
 - 51nod 1134 最长递增子序列
		
题目链接:51nod 1134 最长递增子序列 #include<cstdio> #include<cstring> #include<algorithm> usi ...
 - 动态规划 - 最长递增子序列(LIS)
		
最长递增子序列是动态规划中经典的问题,详细如下: 在一个已知的序列{a1,a2,...,an}中,取出若干数组组成新的序列{ai1,ai2,...,aim},其中下标i1,i2,...,im保持递增, ...
 - 最长递增子序列问题 nyoj 17单调递增最长子序列 nyoj 79拦截导弹
		
一, 最长递增子序列问题的描述 设L=<a1,a2,…,an>是n个不同的实数的序列,L的递增子序列是这样一个子序列Lin=<aK1,ak2,…,akm>,其中k1< ...
 - 2.16 最长递增子序列 LIS
		
[本文链接] http://www.cnblogs.com/hellogiser/p/dp-of-LIS.html [分析] 思路一:设序列为A,对序列进行排序后得到B,那么A的最长递增子序列LIS就 ...
 - 【动态规划】拦截导弹_dilworth定理_最长递增子序列
		
问题 K: [动态规划]拦截导弹 时间限制: 1 Sec 内存限制: 256 MB提交: 39 解决: 10[提交][状态][讨论版] 题目描述 张琪曼:“老师,修罗场是什么?” 墨老师:“修罗是 ...
 - COGS731 [网络流24题] 最长递增子序列(最大流)
		
给定正整数序列x1,..., xn (n<=500).(1)计算其最长递增子序列的长度s.(2)计算从给定的序列中最多可取出多少个长度为s的递增子序列.(3)如果允许在取出的序列中多次使用x1和 ...
 
随机推荐
- Importing Objective-C into Swift
			
Overview You can use Objective-C and Swift files together in a single project, no matter which langu ...
 - python学习(day2)
			
1.常用数据类型及内置方法 1.列表(list) 定义:在中括号[]内存放任意多个值,用逗号隔开. 具体函数和内置方法如下: #定义学生列表,可存放多个学生 students=['a','b','c' ...
 - jquery /css3 全屏的渐变背景
			
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
 - 管理Fragments
			
FragmentManager 为了管理Activity中的fragments,需要使用FragmentManager. 为了得到它,需要调用Activity中的getFragmentManager( ...
 - es6 day01
			
es6语法必须加‘use strict’ 'use strict' //预解释 变量提升 先看下边例子来感受下let的用法与特点 /* console.log(a);//undefined 只声明未定 ...
 - vue+VeeValidate 校验范围(部分校验,全部校验)
			
搜索很久,没有发现有关于vue+VeeValidate部分校验的.自己写一个. 主要是两个场景: 1. 校验范围内,所有的字段. 2. 校验全局所有字段.主要方法: 1.validate(fields ...
 - 全国高校绿色计算大赛 预赛第二阶段(Python)
			
第1关统计分数的麻烦 class Task: def get_lost_scores(self, scores): s = "" index = [1 for i in range ...
 - (十一)python3 encode()和decode()
			
从英文意思上看,encode和decode分别指编码和解码.在python中,Unicode类型是作为编码的基础类型,即: decode encode str ---------> str(Un ...
 - 爬虫基础spider 之(一) --- 初识爬虫
			
爬虫概念 (spider,网络蜘蛛)通过互联网上一个个的网络节点,进行数据的提取.整合以及存储.从而获取我们想要的部分 robots协议 robots协议不是技术层面的协议,只是一个君子协定: 首先在 ...
 - 06-看图理解数据结构与算法系列(AVL树)
			
AVL树 AVL树,也称平衡二叉搜索树,AVL是其发明者姓名简写.AVL树属于树的一种,而且它也是一棵二叉搜索树,不同的是他通过一定机制能保证二叉搜索树的平衡,平衡的二叉搜索树的查询效率更高. AVL ...