转载请注明出处:http://blog.csdn.net/u012860063

题目链接:

pid=1115">http://acm.hdu.edu.cn/showproblem.php?

pid=1115

Lifting the Stone

Problem Description
There are many secret openings in the floor which are covered by a big heavy stone. When the stone is lifted up, a special mechanism detects this and activates poisoned arrows that are shot near the opening. The only possibility is
to lift the stone very slowly and carefully. The ACM team must connect a rope to the stone and then lift it using a pulley. Moreover, the stone must be lifted all at once; no side can rise before another. So it is very important to find the centre of gravity
and connect the rope exactly to that point. The stone has a polygonal shape and its height is the same throughout the whole polygonal area. Your task is to find the centre of gravity for the given polygon.
 
Input
The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing a single integer N (3 <= N <= 1000000) indicating the number of points that form
the polygon. This is followed by N lines, each containing two integers Xi and Yi (|Xi|, |Yi| <= 20000). These numbers are the coordinates of the i-th point. When we connect the points in the given order, we get a polygon. You may assume that the edges never
touch each other (except the neighboring ones) and that they never cross. The area of the polygon is never zero, i.e. it cannot collapse into a single line.
 
Output
Print exactly one line for each test case. The line should contain exactly two numbers separated by one space. These numbers are the coordinates of the centre of gravity. Round the coordinates to the nearest number with exactly two
digits after the decimal point (0.005 rounds up to 0.01). Note that the centre of gravity may be outside the polygon, if its shape is not convex. If there is such a case in the input data, print the centre anyway.
 
Sample Input
2
4
5 0
0 5
-5 0
0 -5
4
1 1
11 1
11 11
1 11
 
Sample Output
0.00 0.00
6.00 6.00

题意:就是给你一个多边行的点的坐标。求此多边形的重心。

一道求多边形重心的模板题。

代码例如以下:

//求多边形中心(採用吉林大学模板)
#include <cstdio>
#include <cmath>
#include <cstring> struct point
{
double x, y;
}PP[1000047]; point bcenter(point pnt[], int n)
{
point p, s;
double tp, area = 0, tpx = 0, tpy = 0;
p.x = pnt[0].x;
p.y = pnt[0].y;
for (int i = 1; i <= n; ++i)
{ // point: 0 ~ n-1
s.x = pnt[(i == n) ? 0 : i].x;
s.y = pnt[(i == n) ? 0 : i].y;
tp = (p.x * s.y - s.x * p.y);
area += tp / 2;
tpx += (p.x + s.x) * tp;
tpy += (p.y + s.y) * tp;
p.x = s.x; p.y = s.y;
}
s.x = tpx / (6 * area); s.y = tpy / (6 * area);
return s;
} int main()
{
int N, t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&N);
for(int i = 0; i < N; i++)
{
scanf("%lf%lf",&PP[i].x,&PP[i].y);
}
point ss = bcenter(PP,N);
printf("%.2lf %.2lf\n",ss.x ,ss.y);
}
return 0;
}

模版例如以下:

struct point
{
double x, y;
}; point bcenter(point pnt[], int n)
{
point p, s;
double tp, area = 0, tpx = 0, tpy = 0;
p.x = pnt[0].x;
p.y = pnt[0].y;
for (int i = 1; i <= n; ++i)
{ // point: 0 ~ n-1
s.x = pnt[(i == n) ? 0 : i].x;
s.y = pnt[(i == n) ? 0 : i].y;
tp = (p.x * s.y - s.x * p.y);
area += tp / 2;
tpx += (p.x + s.x) * tp;
tpy += (p.y + s.y) * tp;
p.x = s.x; p.y = s.y;
}
s.x = tpx / (6 * area); s.y = tpy / (6 * area);
return s;
}

hdu1115 Lifting the Stone(几何,求多边形重心模板题)的更多相关文章

  1. Lifting the Stone(求多边形的重心—)

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...

  2. hdu 1115:Lifting the Stone(计算几何,求多边形重心。 过年好!)

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  3. UVALive 4426 Blast the Enemy! --求多边形重心

    题意:求一个不规则简单多边形的重心. 解法:多边形的重心就是所有三角形的重心对面积的加权平均数. 关于求多边形重心的文章: 求多边形重心 用叉积搞一搞就行了. 代码: #include <ios ...

  4. POJ 1655 Balancing Act【树的重心模板题】

    传送门:http://poj.org/problem?id=1655 题意:有T组数据,求出每组数据所构成的树的重心,输出这个树的重心的编号,并且输出重心删除后得到的最大子树的节点个数,如果个数相同, ...

  5. HDU1115&&POJ1385Lifting the Stone(求多边形的重心)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1115# 大意:给你个n,有n个点,然后给你n个点的坐标,求这n个点形成的多边形的重心的坐标. 直接套模 ...

  6. hdu_1115_Lifting the Stone(求多边形重心)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1115 题意:给你N个点围成的一个多边形,让你求这个多边形的重心. 题解: 将多边形划分为若干个三角形. ...

  7. hdu 2036 改革春风吹满地【求多边形面积模板】

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=2036 http://acm.hust.edu.cn/vjudge/contest/view.action ...

  8. 【模拟7.25】回家(tarjan V-DCC点双连通分量的求法及缩点 求割点)模板题

    作为一道板子题放在第二题令人身心愉悦,不到一个小时码完连对拍都没打. 关于tarjan割点的注意事项: 1.在该板子中我们求的是V-DCC,而不是缩点,V-DCC最少有两个点组成,表示出掉一个块里的任 ...

  9. 【codevs 1200】【NOIP 2012】同余方程 拓展欧几里德求乘法逆元模板题

    模板,,, #include<cstdio> using namespace std; void exgcd(long long a,long long b,long long & ...

随机推荐

  1. vue 表单操作

    <form class="mian__form" @submit.prevent="submit">     <ul>         ...

  2. print keys %map_function 输出 散列的值: OK_funcsplit_funcpackage_VAR

    my %map_function = (     88     "OK_func" => "open_statement",     89     &qu ...

  3. 网络编程 - 协议遇到IO自动切换

    一.协议遇到IO自动切换 python网络编程,遇到IO自动切换,通过模块gevent来实现: import gevent,time def g1(): print ("g1 is star ...

  4. 杀了个回马枪,还是说说position:sticky吧

    <style> article { max-width: 600px; margin: 1em auto; } article h4, article footer { position: ...

  5. sql分组和连接

    SELECT mr.member_id, mr.username, GROUP_CONCAT(DISTINCT jb.company,jb.start_time,jb.end_time)company ...

  6. Mysql对象

    2.简介 2.1 存储过程 2.1.1什么是存储过程 存储过程就是一种类似函数的脚本,可以把多个sql语句组合起来,然后使用 call 存储过程名 来调用,从而执行这些SQL语句. 特点:一次编译,下 ...

  7. 测试Mysql悲观锁

  8. python接口测试之Http请求(三)

    python的强大之处在于提供了很多的标准库,这些标准库可以直接调用,本节部分,重点学习和总结在 接口测试中Python的Http请求的库的学习. 首先来看httplib,官方的解释为:本模块定义了类 ...

  9. get方法和set方法

    定义一个类,该类有一个私有成员变量,通过构造方法将其进行赋初值,并提供该成员的getXXX()和setXXX()方法 提示:假设有private String name;则有 public void  ...

  10. [luoguP1962] 斐波那契数列(矩阵快速幂)

    传送门 解析详见julao博客连接 http://worldframe.top/2017/05/10/清单-数学方法-——-矩阵/ ——代码 #include <cstdio> #incl ...