转载请注明出处:http://blog.csdn.net/u012860063

题目链接:

pid=1115">http://acm.hdu.edu.cn/showproblem.php?

pid=1115

Lifting the Stone

Problem Description
There are many secret openings in the floor which are covered by a big heavy stone. When the stone is lifted up, a special mechanism detects this and activates poisoned arrows that are shot near the opening. The only possibility is
to lift the stone very slowly and carefully. The ACM team must connect a rope to the stone and then lift it using a pulley. Moreover, the stone must be lifted all at once; no side can rise before another. So it is very important to find the centre of gravity
and connect the rope exactly to that point. The stone has a polygonal shape and its height is the same throughout the whole polygonal area. Your task is to find the centre of gravity for the given polygon.
 
Input
The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing a single integer N (3 <= N <= 1000000) indicating the number of points that form
the polygon. This is followed by N lines, each containing two integers Xi and Yi (|Xi|, |Yi| <= 20000). These numbers are the coordinates of the i-th point. When we connect the points in the given order, we get a polygon. You may assume that the edges never
touch each other (except the neighboring ones) and that they never cross. The area of the polygon is never zero, i.e. it cannot collapse into a single line.
 
Output
Print exactly one line for each test case. The line should contain exactly two numbers separated by one space. These numbers are the coordinates of the centre of gravity. Round the coordinates to the nearest number with exactly two
digits after the decimal point (0.005 rounds up to 0.01). Note that the centre of gravity may be outside the polygon, if its shape is not convex. If there is such a case in the input data, print the centre anyway.
 
Sample Input
2
4
5 0
0 5
-5 0
0 -5
4
1 1
11 1
11 11
1 11
 
Sample Output
0.00 0.00
6.00 6.00

题意:就是给你一个多边行的点的坐标。求此多边形的重心。

一道求多边形重心的模板题。

代码例如以下:

//求多边形中心(採用吉林大学模板)
#include <cstdio>
#include <cmath>
#include <cstring> struct point
{
double x, y;
}PP[1000047]; point bcenter(point pnt[], int n)
{
point p, s;
double tp, area = 0, tpx = 0, tpy = 0;
p.x = pnt[0].x;
p.y = pnt[0].y;
for (int i = 1; i <= n; ++i)
{ // point: 0 ~ n-1
s.x = pnt[(i == n) ? 0 : i].x;
s.y = pnt[(i == n) ? 0 : i].y;
tp = (p.x * s.y - s.x * p.y);
area += tp / 2;
tpx += (p.x + s.x) * tp;
tpy += (p.y + s.y) * tp;
p.x = s.x; p.y = s.y;
}
s.x = tpx / (6 * area); s.y = tpy / (6 * area);
return s;
} int main()
{
int N, t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&N);
for(int i = 0; i < N; i++)
{
scanf("%lf%lf",&PP[i].x,&PP[i].y);
}
point ss = bcenter(PP,N);
printf("%.2lf %.2lf\n",ss.x ,ss.y);
}
return 0;
}

模版例如以下:

struct point
{
double x, y;
}; point bcenter(point pnt[], int n)
{
point p, s;
double tp, area = 0, tpx = 0, tpy = 0;
p.x = pnt[0].x;
p.y = pnt[0].y;
for (int i = 1; i <= n; ++i)
{ // point: 0 ~ n-1
s.x = pnt[(i == n) ? 0 : i].x;
s.y = pnt[(i == n) ? 0 : i].y;
tp = (p.x * s.y - s.x * p.y);
area += tp / 2;
tpx += (p.x + s.x) * tp;
tpy += (p.y + s.y) * tp;
p.x = s.x; p.y = s.y;
}
s.x = tpx / (6 * area); s.y = tpy / (6 * area);
return s;
}

hdu1115 Lifting the Stone(几何,求多边形重心模板题)的更多相关文章

  1. Lifting the Stone(求多边形的重心—)

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...

  2. hdu 1115:Lifting the Stone(计算几何,求多边形重心。 过年好!)

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  3. UVALive 4426 Blast the Enemy! --求多边形重心

    题意:求一个不规则简单多边形的重心. 解法:多边形的重心就是所有三角形的重心对面积的加权平均数. 关于求多边形重心的文章: 求多边形重心 用叉积搞一搞就行了. 代码: #include <ios ...

  4. POJ 1655 Balancing Act【树的重心模板题】

    传送门:http://poj.org/problem?id=1655 题意:有T组数据,求出每组数据所构成的树的重心,输出这个树的重心的编号,并且输出重心删除后得到的最大子树的节点个数,如果个数相同, ...

  5. HDU1115&&POJ1385Lifting the Stone(求多边形的重心)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1115# 大意:给你个n,有n个点,然后给你n个点的坐标,求这n个点形成的多边形的重心的坐标. 直接套模 ...

  6. hdu_1115_Lifting the Stone(求多边形重心)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1115 题意:给你N个点围成的一个多边形,让你求这个多边形的重心. 题解: 将多边形划分为若干个三角形. ...

  7. hdu 2036 改革春风吹满地【求多边形面积模板】

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=2036 http://acm.hust.edu.cn/vjudge/contest/view.action ...

  8. 【模拟7.25】回家(tarjan V-DCC点双连通分量的求法及缩点 求割点)模板题

    作为一道板子题放在第二题令人身心愉悦,不到一个小时码完连对拍都没打. 关于tarjan割点的注意事项: 1.在该板子中我们求的是V-DCC,而不是缩点,V-DCC最少有两个点组成,表示出掉一个块里的任 ...

  9. 【codevs 1200】【NOIP 2012】同余方程 拓展欧几里德求乘法逆元模板题

    模板,,, #include<cstdio> using namespace std; void exgcd(long long a,long long b,long long & ...

随机推荐

  1. JavaSE-21 字符编码简介

    ASCII ASCII(American Standard Code for Information Interchange,美国信息交换标准代码)是基于拉丁字母的一套电脑编码系统,主要用于显示现代英 ...

  2. python selenium等待特定网页元素加载完毕

    selenium等待特定元素加载完毕 is_disappeared = WebDriverWait(driver, 8, 0.5, ignored_exceptions=TimeoutExceptio ...

  3. 3D超炫酷旋转

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...

  4. nodejs初探

    var http= require('http');var server= http.createServer(function(req,res){ res.writeHead(200,{" ...

  5. Linux网络配置出现的问题

    网络连接 : 选择桥接模式进入字符界面后,管理员登入后  ifconfig显示eth0和ol,但是不显示静态IP地址,即无inet.地址.广播.掩码 解决方案: 1.使用sudo dhclient e ...

  6. python3.x Day6 paramiko

    python3 paramiko模块,用来进行远程操作linux服务器,利用的就是ssh #利用用户名,密码,进行连接 import paramiko #创建一个SSH对象 ssh=paramiko. ...

  7. python3.x Day4 内置方法,装饰器,生成器,迭代器

    内置方法,就是python3提供的各种函数,可以认为是关键字,帮助进行一些列的牛x运算. abs()#取绝对值 all([])#可迭代对象中的所有元素都为True 则为True,只要至少一个为Fals ...

  8. 【Codeforces 329B】Biridian Forest

    [链接] 我是链接,点我呀:) [题意] 题意 [题解] 找到出口到每个点的最短距离. 设你到出口的最短距离为temp 那么如果某个人到终点的距离<=temp,则他们肯定能遇到你 因为他们可以在 ...

  9. Android BGABadgeView:显示提示数字(2)

     Android BGABadgeView:显示提示数字(2) 在附录文章3的基础上,对代码进行稍微改造,显示在红色小圆球内部显示数字,同时给红色小圆球通过可编程调控红色小圆球的整体外观,布局文件 ...

  10. 全文搜索(A-3)-用户建模

    用户模型可以分为静态模型.动态模型.混合推荐用户模型. 静态模型往往通过显式方式收集用户偏好信息: 动态模型通过隐式方式收集用户偏好信息: 基于内容的用户系统的推荐模型: 关键字匹配,空间向量模型 协 ...