[BZOJ 3823]定情信物
题面
题解
这题主要考高中物理和数学。
首先定义 \(f[i][j]\) 表示 \(i\) 维超立方体中第 \(j\) 维元素的数量,根据实际意义,我们可以推出递推式: \(f[i][j]=2\cdot f[i-1][j]+f[i-1][j-1]\) 。
\(i\) 维超立方体是由 \(i\!-\!1\) 维超立方体平移得来的,那么第 \(j\) 维元素来源为原来的第 \(j\) 维元素并复制了一份,加上原来的第 \(j\!-\!1\) 维元素通过平移而新构成了一部分。——Ezio
然后我们考虑其组合意义,发现 \(f[i][j]\) 表示把 \(i\) 个元素分为 \(j\) 份,每份第一个元素贡献为 \(1\) ,其它元素贡献为 \(2\) 。那么我们就可以定义 \(g[i][j]\) 表示把 \(i\) 个元素分为 \(j\) 份,每个元素贡献都为 \(2\) ,也就是说 \(g[i][j]=2^i\cdot C_i^j\) ,并且有 \(g[i][j]=2^j\cdot f[i][j]\) ,那么 \(f[i][j]=2^{i-j}\cdot C_i^j\) ,然后就能直接算了,注意要用 \(\text{Lucas}\) 。
代码
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
const int maxn=1e7+3;
int n,MOD;
int bin[maxn];
int Fac[maxn];
int Inv[maxn];
inline int Pow(int x,int k){
int ans=1;
for(;k;x=x*1ll*x%MOD,k>>=1)
if(k&1)ans=ans*1ll*x%MOD;
return ans;
}
inline int C(int n,int m){return Fac[n]*1ll*Inv[m]%MOD*Inv[n-m]%MOD;}
inline int Lucas(int n,int m){
if(n<MOD && m<MOD)
return n<m ? 0 : C(n,m);
const int nn=n%MOD,mm=m%MOD;
return nn<mm ? 0 : C(nn,mm)*1ll*Lucas(n/MOD,m/MOD)%MOD;
}
int main(){
scanf("%d%d",&n,&MOD);
int M=std::min(MOD-1,n);
for(int i=Fac[0]=1;i<=M;++i)
Fac[i]=Fac[i-1]*1ll*i%MOD;
Inv[M]=Pow(Fac[M],MOD-2);
for(int i=M-1;~i;--i)
Inv[i]=Inv[i+1]*1ll*(i+1)%MOD;
for(int i=bin[0]=1;i<=n;++i)
bin[i]=(bin[i-1]<<1)%MOD;
int ans=0;
for(int i=0;i<=n;++i)
ans^=bin[n-i]*1ll*Lucas(n,i)%MOD;
printf("%d\n",ans);
return 0;
}
[BZOJ 3823]定情信物的更多相关文章
- bzoj 3823: 定情信物 线性筛逆元
3823: 定情信物 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 108 Solved: 2[Submit][Status] Descriptio ...
- 定情信物(bzoj 3823)
Description 都说程序员找不到妹子,可是无人知晓,三生石上竟然还刻着属于小 E 的一笔. 那一天,小 E 穷尽毕生的积蓄,赠与了妹子一个非同寻常的定情信物.那是一个小 小的正方体,但透过它, ...
- BZOJ3823 : 定情信物
n维超立方体有$2^{n-i}C_n^i$个i维元素,于是$O(n)$预处理出1到n的逆元,再$O(n)$计算即可. 注意Trick:P可能小于n,所以要将数字表示成$a\times P^b$的形式. ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- 洛谷 P2111 考场奇遇
P2111 考场奇遇 题目背景 本市的某神校里有一个学霸,他的名字叫小明(为了保护主人公的隐私,他的名字都用“小明”代替).在这次的期中考试中,小明同学走桃花运,在考场上认识了一位女生,她的名字叫小红 ...
- 深入理解分布式系统的2PC和3PC
协调者 在分布式系统中,每一个机器节点虽然都能明确的知道自己执行的事务是成功还是失败,但是却无法知道其他分布式节点的事务执行情况.因此,当一个事务要跨越多个分布式节点的时候(比如,淘宝下单流程,下单系 ...
- VB调用存储过程 - CreateParameter 方法
这次又转为VB6了....... (┬_┬) ---------------------------------------------------------------------------- ...
- Servlet基本_Filter
1.概念・サーブレットフィルタとは.サーブレットやJSPの「共通の前後処理」を記述するための仕組みです.・フィルタはサーブレットやJSPの前に位置し.実行前と後に.リクエスト.レスポンスに対して任意の ...
- NO.008-2018.02.13《折桂令·春情》元代:徐再思
折桂令·春情_古诗文网 折桂令·春情 元代:徐再思 平生不会相思,才会相思,便害相思.生下来以后还不会相思,才刚刚懂了什么是相思,却深受着相思之苦. 身似浮云,心如飞絮,气若游丝.身像飘浮的云,心 ...
随机推荐
- Monitor CodeForces - 846D
题目 题意:有一个n*m的显示屏,有q个坏点先后出现,已知第i个坏点位置为(xi,yi),在ti时间出现.显示屏上出现一个k*k的矩阵全都是坏点时显示屏就是坏的.输出显示屏坏的时间,如果不会坏就输出- ...
- 数学 2015百度之星初赛2 HDOJ 5255 魔法因子
题目传送门 /* 数学:不会写,学习一下这种解题方式:) 思路:设符合条件的数的最高位是h,最低位是l,中间不变的部分为mid,由题意可得到下面的公式(这里对X乘上1e6用a表示,b表示1e6) (h ...
- scau 17967 大师姐唱K的固有结界 分类暴力 + RMQ
由于能放两次,那么分类, 1.连续使用,(这个直接O(n^2)暴力) 2.分开使用. 分开使用的话,首先暴力枚举,用T时间,能从第1个位置,唱到第几首歌,然后剩下的就是从pos + 1, n这个位置, ...
- wamp无法进入phpMyAdmin或localhost的解决方法
我用的是最新版的wampsever5,在win7(64位)下安装正常使用,没有无法进入phpMyAdmin的问题,但是我在虚拟机安装了win8(64位专业版),测试在win8下面的使用情况时,就有问题 ...
- js中关于this的理解
常见:在普通函数中的this,指向 全局 function thisObj(name){ this.name = name; console.log(this); } 但是在严格模式下的函数,this ...
- checkbox:click事件触发文本框显示隐藏
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 解决异常System.Runtime.Interopservices.COMException RequestLock问题
工具——导入导出设置,重置调试设置就可以了,这是调试文件的异常
- (译文)IOS block编程指南 4 声明和创建blocks
Declaring and Creating Blocks (声明和创建blocks) Declaring a Block Reference (声明一个block引用) Block variable ...
- ElasticSearch数据库同步插件logstash
1.下载和elasticsearch 相同版本的logstash. 2.进行解压后,进入bin下,新建一个文件mysql.conf,并输入 input { stdin{ }} output { std ...
- fgetpos, fseek, fsetpos, ftell, rewind - 重定位某个流
总览 (SYNOPSIS) #include <stdio.h> int fseek(FILE *stream, long offset, int whence); long ftell( ...