\(\\\)

\(Description\)


一共\(N​\)道题目,第\(i​\)道题有\(A_i​\)个选项,现在有一个人做完了所有题目,但将每一道题的答案都写到了下一道题的位置\((​\)第\(N​\)道写到了第一道的位置\()​\),现在这个人的选项和每道题的正确答案对于每一个选项均为随机,求这个人做对的题目数的期望。

  • \(N\in [1,10^7]\)

\(\\\)

\(Solution\)


第\(i\)个位置选择了合法的第\(i+1\)个位置的概率,即选了一个范围在\([1,A_{i+1}]\)范围内的数的概率,是\(\frac{min(A_i,A_{i+1})}{A_i}\)。

选对的概率是\(\frac{1}{A_{i+1}}\),所以第\(i\)个位置做对了第\(i+1\)道题的概率是\(\frac{min(A_i,A_{i+1})}{A_i\times A_{i+1}}=\frac{1}{max(A_i,A_{i+1})}\)。

根据期望的线性性,做对题目总数的期望等于做对每一道题的期望之和,而做对一道题的贡献是\(1\),所以是做对每一道题的概率之和,求出来每一道的概率之后直接求和就好。

\(\\\)

\(Code\)


#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 10000010
#define R register
#define gc getchar
using namespace std;
typedef long long ll; inline int rd(){
int x=0; bool f=0; char c=gc();
while(!isdigit(c)){if(c=='-')f=1;c=gc();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=gc();}
return f?-x:x;
} int n,A,B,C,a[N]; int main(){
n=rd(); A=rd(); B=rd(); C=rd(); a[1]=rd();
for(R int i=2;i<=n;i++) a[i]=((ll)a[i-1] * A + B) % 100000001;
for(R int i=1;i<=n;i++) a[i] = a[i]%C+1;
double ans=1.0/(double)max(a[1],a[n]);
for(R int i=2;i<=n;++i) ans+=1.0/(double)max(a[i],a[i-1]);
printf("%.3lf\n",ans);
return 0;
}

[ BZOJ 2134 ] 单选错位的更多相关文章

  1. BZOJ 2134: 单选错位( 期望 )

    第i个填到第i+1个的期望得分显然是1/max(a[i],a[i+1]).根据期望的线性性, 我们只需将每个选项的期望值累加即可. ---------------------------------- ...

  2. bzoj 2134 单选错位(期望)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2134 [题意] ai与ai+1相等得1分,求期望. [思路] 每个题的期望都是独立的. ...

  3. BZOJ——2134: 单选错位

    http://www.lydsy.com/JudgeOnline/problem.php?id=2134 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: ...

  4. 【刷题】BZOJ 2134 单选错位

    Description Input n很大,为了避免读入耗时太多, 输入文件只有5个整数参数n, A, B, C, a1, 由上交的程序产生数列a. 下面给出pascal/C/C++的读入语句和产生序 ...

  5. BZOJ 2134 单选错位 ——期望DP

    发现概率是∑1/两道题答案相同的概率, 稍加化简 #include <map> #include <ctime> #include <cmath> #include ...

  6. 【BZOJ】2134: 单选错位 期望DP

    [题意]有n道题,第i道题有ai个选项.把第i道题的正确答案填到第i+1道题上(n填到1),问期望做对几道题.n<=10^7. [算法]期望DP [题解]正确答案的随机分布不受某道题填到后面是否 ...

  7. Bzoj 2134: [国家集训队2011]单选错位(期望)

    2134: 单选错位 Time Limit: 10 Sec Memory Limit: 259 MB Description Input n很大,为了避免读入耗时太多,输入文件只有5个整数参数n, A ...

  8. BZOJ2134 luoguP1297 [国家集训队]单选错位

    单选错位 [问题描述] gx和lc去参加noip初赛,其中有一种题型叫单项选择题,顾名思义,只有一个选项是正确答案.试卷上共有n道单选题,第i道单选题有ai个选项,这ai个选项编号是1,2,3,…,a ...

  9. BZOJ_2134_单选错位——期望DP

    BZOJ_2134_单选错位——期望DP 题意: 分析:设A为Ai ∈ [1,ai+1] 的概率,B为Ai = A(imodn+1)的概率显然P(A|B) = 1,那么根据贝叶斯定理P(B) = P( ...

随机推荐

  1. JSON.parseObject将json字符串转换为bean类,是否大小写敏感区分---https://blog.csdn.net/mathlpz126/article/details/80684034

    JSON.parseObject将json字符串转换为bean类,是否大小写敏感区分 https://blog.csdn.net/mathlpz126/article/details/80684034

  2. SQL to MongoDB Mapping Chart

    http://docs.mongodb.org/manual/reference/sql-comparison/ In addition to the charts that follow, you ...

  3. 转载 - PowerDesigner(CDM—PDM—SQL脚本的转换流程)

    出处: http://jbeduhai.iteye.com/blog/338579 由于图片复制上去不显示,如想看内容及图片详情,请下载附件 PowerDesigner数据模型(CDM—PDM—SQL ...

  4. hdu_1024_糖果大战_201404021640

    糖果大战 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

  5. SecureCRT 8.0公布

    百度搜索到的7.3 注冊码生成器还是能够用于8.0的破解. 破解时,选择手动输入(Enter Licence Manually)产生的代码. 添加了一些特性,我最看重的是: 1.  能够在以下命令窗体 ...

  6. ubuntu 网络监控 nethogs

    ***网络监控ubuntu自带的 netstat -an 查看当前网络状况 sudo netstat -anp 查看当前网络状况带对应进程号 traceroute 追踪路由 ***我比较喜欢用Neth ...

  7. 如何使用IVT BlueSoleil 如何在电脑上使用蓝牙耳机

    1 确保电脑上有蓝牙适配器 (现在很多电脑是不配蓝牙的),如果没有,网上买个蓝牙适配去,十几块钱很便宜.好了之后装一个下面这个软件,然后搜索蓝牙耳机,下面的状态栏就是"搜索设备" ...

  8. 使用NDIS驱动监測以太网络活动

    转载自: http://blog.csdn.net/ddtpower/article/details/656687   本论文提供了NDIS的主要的理解,应用程序怎样与驱动程序交互.发挥驱动程序最佳性 ...

  9. Centos 7 Apache编译安装

    1.安装apache ./configure --prefix=/usr/local/apache2 --enable-rewrite --enable-so --enable-headers --e ...

  10. LeetCode 720. Longest Word in Dictionary (字典里最长的单词)

    Given a list of strings words representing an English Dictionary, find the longest word in words tha ...