Memory Limit: 131072KB   64bit IO Format: %lld & %llu

Description

机器上有N个需要处理的任务,它们构成了一个序列。这些任务被标号为1到N,因此序列的排列为1,2,3...N。这N个任务被分成若干批,每批包含相邻的若干任务。从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti。在每批任务开始前,机器需要启动时间S,而完成这批任务所需的时间是各个任务需要时间的总和。注意,同一批任务将在同一时刻完成。每个任务的费用是它的完成时刻乘以一个费用系数Fi。请确定一个分组方案,使得总费用最小。

Input

第一行两个整数,N,S。
接下来N行每行两个整数,Ti,Fi。

Output

一个整数,为所求的答案。

Sample Input

5 1
1 3
3 2
4 3
2 3
1 4

Sample Output

153

Hint

 

Source

SDOI2012

BZOJ挂了,目前只过了样例,没有测试。

是 http://www.cnblogs.com/SilverNebula/p/5926270.html 这道题的强化版本,数据范围达到了1e6,同时t可能出现负值(强行时间倒流),这使得原本的公式不能保证斜率单调。

解决办法是不弹队头,保留所有位置,每次二分查找斜率最大位置。

——然而神tm我不管写什么算法,加上二分就WA,这次只是加个二分,又调了20分钟才过样例。

 /*by SilverN*/
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define LL long long
using namespace std;
const int mxn=1e6+;
long long read(){
long long x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
LL n;
LL s;
LL t[mxn],f[mxn];
LL sumt[mxn],sumf[mxn];
LL dp[mxn];
int q[mxn];
LL gup(int j,int k){
return (dp[j]-dp[k]);
}
LL gdown(int j,int k){
return sumf[j]-sumf[k];
}
LL gdp(int i,int j){
return dp[j]+(sumf[i]-sumf[j])*sumt[i]+s*(sumf[n]-sumf[j]);
}
int main(){
n=read();s=read();
int i,j;
for(i=;i<=n;i++){
t[i]=read();f[i]=read();
sumt[i]=sumt[i-]+t[i];
sumf[i]=sumf[i-]+f[i];
}
memset(dp,0x3f,sizeof dp);
dp[]=;
int hd=,tl=;
q[hd]=;
for(i=;i<=n;i++){
int l=,r=tl;
while(l<r){
int mid=(l+r)>>;
if( ((double)dp[q[mid+]]-dp[q[mid]])>=(double)(s+sumt[i])*(sumf[q[mid+]]-sumf[q[mid]]))r=mid;
else l=mid+;
}
dp[i]=min(dp[i],gdp(i,q[l]));
printf("i:%d %lld\n",i,gup(i,q[l])/gdown(i,q[l]));
while(hd<tl && gup(i,q[tl])*gdown(q[tl],q[tl-])<=gup(q[tl],q[tl-])*gdown(i,q[tl]) )tl--;
q[++tl]=i;
}
printf("%lld",dp[n]);
return ;
}

Bzoj 2726 SDOI 任务安排的更多相关文章

  1. BZOJ 2726: [SDOI2012]任务安排( dp + cdq分治 )

    考虑每批任务对后面任务都有贡献, dp(i) = min( dp(j) + F(i) * (T(i) - T(j) + S) ) (i < j <= N)  F, T均为后缀和. 与j有关 ...

  2. BZOJ 2726: [SDOI2012]任务安排 [斜率优化DP 二分 提前计算代价]

    2726: [SDOI2012]任务安排 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 868  Solved: 236[Submit][Status ...

  3. bzoj 2726 [SDOI2012]任务安排(斜率DP+CDQ分治)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2726 [题意] 将n个任务划分成若干个块,每一组Mi任务花费代价(T+sigma{ t ...

  4. bzoj 2726: [SDOI2012]任务安排【cdq+斜率优化】

    cdq复健.jpg 首先列个n方递推,设sf是f的前缀和,st是t的前缀和: \[ f[i]=min(f[j]+s*(sf[n]-sf[j])+st[i]*(sf[i]-sf[j])) \] 然后移项 ...

  5. bzoj 2726: [SDOI2012]任务安排

    Description 机 器上有N个需要处理的任务,它们构成了一个序列.这些任务被标号为1到N,因此序列的排列为1,2,3...N.这N个任务被分成若干批,每批包含相邻的 若干任务.从时刻0开始,这 ...

  6. BZOJ.2726.[SDOI2012]任务安排(DP 斜率优化)

    题目链接 数据范围在这:https://lydsy.com/JudgeOnline/wttl/thread.php?tid=613, 另外是\(n\leq3\times10^5\). 用\(t_i\) ...

  7. BZOJ 2726 [SDOI2012] 任务安排 - 斜率优化dp

    题解 转移方程与我的上一篇题解一样 : $S\times sumC_j  + F_j = sumT_i \times sumC_j + F_i - S \times sumC_N$. 分离成:$S\t ...

  8. BZOJ 2726: [SDOI2012]任务安排 斜率优化 + 凸壳二分 + 卡精

    Code: #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) # ...

  9. [bzoj P2726] [SDOI2012]任务安排

    [bzoj P2726] [SDOI2012]任务安排 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 1204 Solved: 349[Submit] ...

随机推荐

  1. A8ERP管理系统(采购单管理)

    花了一个星期的时间终于把采购模块完成了. 最近新开发的采购单管理,供大家参考学习,软件一步一步来.

  2. ubuntu用户自定义的命令alias永久生效

    cd ~ vi .bash_profile alias ll='ls -ltr' . .bash_profile ps:写在.bashrc终端断开就没了

  3. Spring Boot整合Spring Batch

    引言 Spring Batch是处理大量数据操作的一个框架,主要用来读取大量数据,然后进行一定的处理后输出指定的形式.比如我们可以将csv文件中的数据(数据量几百万甚至几千万都是没问题的)批处理插入保 ...

  4. Android学习笔记(十九) OkHttp

    一.概述 根据我的理解,OkHttp是为了方便访问网络或者获取服务器的资源,而封装出来的一个工具包.通常的使用步骤是:首先初始化一个OkHttpClient对象,然后使用builder模式构造一个Re ...

  5. HttpURLConnection读取http信息

    废话不多说,直接上code. package mytest; import java.io.BufferedReader; import java.io.IOException; import jav ...

  6. Summary of 2016 International Trusted Computing and Cloud Security Summit

    1)      Welcome Remarks 2)      The advancement of Cloud Computing and Tursted Computing national st ...

  7. python中*号和**号的用法

    1.乘法符号 2.可变长参数 当我们使用函数时,需要传入不定个数的位置参数时,就可以使用*号表示,即*args,以元组形式传入:需要传入不定个数的关键字参数时,使用**表示,即**kwargs,以字典 ...

  8. 三大框架所使用的UI框架

  9. numpy次方计算

    >>> 2**np.arange(3, 6) array([ 8, 16, 32])

  10. 搜索 || BFS || POJ 3278 Catch That Cow

    农夫在x位置,下一秒可以到x-1, x+1, 2x,问最少多少步可以到k *解法:最少步数bfs 要注意的细节蛮多的,写在注释里了 #include <iostream> #include ...