看别的blog好像我用了比较麻烦的方法……

(以下的n都--过

\[c[i]=\sum_{j=i}^{n}a[i]*b[j-i]
\]

设j=i+j

\[c[i]=\sum_{j=0}^{n-i}a[i+j]*b[i+j-i]
\]

\[c[i]=\sum_{j=0}^{n-i}a[i+j]*b[j]
\]

再设j=n-i-j

\[c[i]=\sum_{n-i-j}^{n-i}a[n-i-j+i]b[n-i-j]
\]

\[n-i-j \geq 0 \Rightarrow j \leq n-i
\]

\[n-i-j<=n-i \Rightarrow j \geq 0
\]

\[c[i]=\sum_{j=0}^{n-i}a[n-j]b[n-i-j]
\]

然后把n-i和i换一下

\[c[n-i]=\sum_{j=0}^{i}a[n-j]b[i-j]
\]

至此,只有a看起来不是卷积,于是可以在读入的时候就把a数组翻转(读入b[i],a[n-i]即可)

然后注意c也是反转的,输出的时候倒着输出

#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
const int mod=998244353,G=3,N=5e6;
int lm,bt,n,re[N],ans[N],a[N],b[N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
int ksm(int a,int b)
{
int r=1;
while(b)
{
if(b&1)
r=1ll*r*a%mod;
a=1ll*a*a%mod;
b>>=1;
}
return r;
}
void dft(int a[],int f)
{
for(int i=0;i<lm;i++)
if(i<re[i])
swap(a[i],a[re[i]]);
for(int i=1;i<lm;i<<=1)
{
int wi=ksm(G,(mod-1)/(i*2));
if(f==-1)
wi=ksm(wi,mod-2);
for(int k=0;k<lm;k+=(i<<1))
{
int w=1,x,y;
for(int j=0;j<i;j++)
{
x=a[k+j];
y=1ll*w*a[k+j+i]%mod;
a[k+j]=((x+y)%mod+mod)%mod;
a[k+j+i]=((x-y)%mod+mod)%mod;
w=1ll*w*wi%mod;
}
}
}
if(f==-1)
{
int inv=ksm(lm,mod-2);
for(int i=0;i<lm;i++)
a[i]=1ll*a[i]*inv%mod;
}
}
void ntt()
{
bt=1;
for(;(1<<bt)<=2*n;bt++);
lm=(1<<bt);
for(int i=0;i<=lm;i++)
re[i]=(re[i>>1]>>1)|((i&1)<<(bt-1));
dft(a,1);
dft(b,1);
for(int i=0;i<lm;i++)
a[i]=1ll*a[i]*b[i]%mod;
dft(a,-1);
}
int main()
{
n=read();
n--;
for(int i=0;i<=n;i++)
a[n-i]=read(),b[i]=read();
ntt();
for(int i=n;i>=0;i--)
printf("%d\n",a[i]);
return 0;
}

bzoj 2194: 快速傅立叶之二【NTT】的更多相关文章

  1. bzoj 2194: 快速傅立叶之二 -- FFT

    2194: 快速傅立叶之二 Time Limit: 10 Sec  Memory Limit: 259 MB Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k & ...

  2. bzoj 2194 快速傅立叶之二 —— FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2194 如果把 a 序列翻转,则卷积得到的是 c[n-i],再把得到的 c 序列翻转即可. 代 ...

  3. [BZOJ]2194: 快速傅立叶之二

    题目大意:给定序列a,b,求序列c满足c[k]=sigma(a[i]*b[i-k]) (k<=i<n).(n<=10^5) 思路:观察发现就是普通的卷积反一反(翻转ab其中一个后做卷 ...

  4. 【刷题】BZOJ 2194 快速傅立叶之二

    Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非 ...

  5. BZOJ.2194.快速傅立叶之二(FFT 卷积)

    题目链接 \(Descripiton\) 给定\(A[\ ],B[\ ]\),求\[C[k]=\sum_{i=k}^{n-1}A[i]*B[i-k]\ (0\leq k<n)\] \(Solut ...

  6. BZOJ 2194 快速傅立叶之二 ——FFT

    [题目分析] 咦,这不是卷积裸题. 敲敲敲,结果样例也没过. 看看看,卧槽i和k怎么反了. 艹艹艹,把B数组取个反. 靠靠靠,怎么全是零. 算算算,最终的取值范围算错了. 交交交,总算是A掉了. [代 ...

  7. BZOJ 2194 快速傅立叶变换之二 | FFT

    BZOJ 2194 快速傅立叶变换之二 题意 给出两个长为\(n\)的数组\(a\)和\(b\),\(c_k = \sum_{i = k}^{n - 1} a[i] * b[i - k]\). 题解 ...

  8. 【BZOJ 2194】2194: 快速傅立叶之二(FFT)

    2194: 快速傅立叶之二 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1273  Solved: 745 Description 请计算C[k]= ...

  9. bzoj2194 快速傅立叶之二 ntt

    bzoj2194 快速傅立叶之二 链接 bzoj 思路 对我这种和式不强的人,直接转二维看. 发现对\(C_k\)贡献的数对(i,j),都是右斜对角线. 既然贡献是对角线,我们可以利用对角线的性质了. ...

随机推荐

  1. HUNAN 11567 Escaping (最大流)

    http://acm.hunnu.edu.cn/online/?action=problem&type=list&courseid=0&querytext=&pagen ...

  2. P3366 最小生成树【模板】 洛谷

    https://www.luogu.org/problem/show?pid=3366 题目描述 如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz 输入输出格式 输入格式: 第一行包 ...

  3. 《springMVC》学习笔记

    1.SpringMVC框架 1.1 MVC在b/s系统下的应用 用户发送request请求到Controller Controller请求模型(Model)进行处理 Model将处理结果返回到Cont ...

  4. Spring AOP Capability and Goal

    AOP Capability: 1.Spring声明式事务管理配置. 2.Controller层的参数校验. 3.使用Spring AOP实现MySQL数据库读写分离案例分析 4.在执行方法前,判断是 ...

  5. freeswitch电话代接

    Misc. Dialplan Tools intercept Description Allows one channel to bridge itself to the a or b leg of ...

  6. Eclipse 中 新建maven项目 无法添加src/main/java 问题

    eclipse创建maven web项目,在选择maven_archetype_web原型后,默认只有src/main/resources这个Source Floder. 按照maven目录结构,添加 ...

  7. SharePoint中取得ACL和组中用户数量

     SharePoint中取得ACL和组中用户数量 1. 取得ACL的数量: select COUNT(ra.PrincipalId) as [Count],p.ScopeUrl from [WSS_C ...

  8. Oracle 数据库管理员的任务

    设计.实施和维护 Oracle 数据库时,按优先次序排列的任务包括:   1. 确定数据库服务器硬件   2. 安装 Oracle 软件   3. 为数据库和安全策略制定计划   4. 创建.移植和打 ...

  9. Firefox下td用display控制页面导致页面变形

    Firefox下table的td元素假设使用了display:'block'会使得table变形.原因是block会将对象强制作为块对象呈递,为对象之后加入新行,所以并不适合td,改成display: ...

  10. Robotframework集成jenkins执行用例

    Robotframework+jenkins配置 假设我们完成了一个模块的用例设计,可是想晚上9点或凌晨运行,这时候该怎么实现呢?jenkins可以很好解决我们的疑难. Jenkins安装 这里简单说 ...