bzoj 2337 [HNOI2011]XOR和路径【高斯消元+dp】
首先,我们发现,因为是无向图,所以相连的点之间是有“依赖性”的,所以不能直接用dp求解。
因为是xor,所以按位处理,于是列线性方程组,设$ x[i] $为点i到n异或和为1的期望,因为从1到n和从n到1一样,所以选择倒着推,即,
if(deg[e[i].va]==0)
\]
else
\]
列n元n次方程组高斯消元求解即可
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=105,M=100005;
int n,m,h[N],cnt,in[N];
double f[N][N],ans;
struct qwe
{
int ne,to,va;
}e[M<<1];
void add(int u,int v,int w)
{
cnt++;
in[u]++;
e[cnt].ne=h[u];
e[cnt].to=v;
e[cnt].va=w;
h[u]=cnt;
}
void gaosi()
{
for(int i=1;i<=n;i++)
{
int id=i;
double mx=0.0;
for(int j=i;j<=n;j++)
if(fabs(f[j][i])>mx)
id=j,mx=fabs(f[j][i]);
if(id!=i)
for(int j=1;j<=n+1;j++)
swap(f[id][j],f[i][j]);
double t=f[i][i];
for(int j=1;j<=n+1;j++)
f[i][j]/=t;
for(int j=1;j<=n;j++)
if(j!=i)
{
double t=f[j][i];
for(int k=1;k<=n+1;k++)
f[j][k]-=t*f[i][k];
}
}
}
int main()
{
scanf("%d%d",&n,&m);
for (int i=1,x,y,z;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
if (x!=y)
add(y,x,z);
}
for(int i=0;i<=30;i++)
{
memset(f,0,sizeof(f));
for(int u=1;u<=n-1;u++)
{
f[u][u]=1.0;
for(int j=h[u];j;j=e[j].ne)
{
if(e[j].va&(1<<i))
f[u][e[j].to]+=1.0/in[u],f[u][n+1]+=1.0/in[u];
else
f[u][e[j].to]-=1.0/in[u];
}
}
f[n][n]=1.0;
gaosi();
ans+=(f[1][n+1])*(1<<i);
}
printf("%.3lf\n",ans);
return 0;
}
bzoj 2337 [HNOI2011]XOR和路径【高斯消元+dp】的更多相关文章
- BZOJ 2337: [HNOI2011]XOR和路径( 高斯消元 )
一位一位考虑异或结果, f(x)表示x->n异或值为1的概率, 列出式子然后高斯消元就行了 --------------------------------------------------- ...
- BZOJ 2337: [HNOI2011]XOR和路径 [高斯消元 概率DP]
2337: [HNOI2011]XOR和路径 题意:一个边权无向连通图,每次等概率走向相连的点,求1到n的边权期望异或和 这道题和之前做过的高斯消元解方程组DP的题目不一样的是要求期望异或和,期望之间 ...
- BZOJ2337:[HNOI2011]XOR和路径(高斯消元)
Description 给定一个无向连通图,其节点编号为 1 到 N,其边的权值为非负整数.试求出一条从 1 号节点到 N 号节点的路径,使得该路径上经过的边的权值的“XOR 和”最大.该路径可以重复 ...
- BZOJ2337: [HNOI2011]XOR和路径(高斯消元,期望)
解题思路: Xor的期望???怕你不是在逗我. 按为期望,新技能get 剩下的就是游走了. 代码: #include<cmath> #include<cstdio> #incl ...
- 【概率DP/高斯消元】BZOJ 2337:[HNOI2011]XOR和路径
2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 682 Solved: 384[Submit][Stat ...
- BZOJ 2337 XOR和路径 | 高斯消元 期望 位运算
BZOJ 2337 XOR和路径 题解 这道题和游走那道题很像,但又不是完全相同. 因为异或,所以我们考虑拆位,分别考虑每一位: 设x[u]是从点u出发.到达点n时这一位异或和是1的概率. 对于所有这 ...
- bzoj 2337: [HNOI2011]XOR和路径
Description Input Output Sample Input Sample Output HINT Source Day2 终于把这个史前遗留的坑给填了... 首先异或的话由位无关性,可 ...
- ●BZOJ 2337 [HNOI2011]XOR和路径
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2337题解: 概率dp, 因为异或的每一位之间没有关系,我们就依次考虑每一位k.(即边权要么为 ...
- BZOJ 2337 [HNOI2011]XOR和路径 ——期望DP
首先可以各位分开求和 定义$f(i)$表示从i到n的期望值,然后经过一些常识,发现$f(n)=1$的时候的转移,然后直接转移,也可以找到$f(n)=0$的转移. 然后高斯消元31次就可以了. #inc ...
随机推荐
- 2018 ACM 国际大学生程序设计竞赛上海大都会赛重现赛 A,D
A链接:https://www.nowcoder.com/acm/contest/163/A Fruit Ninja is a juicy action game enjoyed by million ...
- 洛谷 P3807 【模板】卢卡斯定理
P3807 [模板]卢卡斯定理 题目背景 这是一道模板题. 题目描述 给定n,m,p(1\le n,m,p\le 10^51≤n,m,p≤105) 求 C_{n+m}^{m}\ mod\ pCn+mm ...
- Python中文GBK编码解决实例
http://eatsalt.blog.163.com/blog/static/879402662009420508748/ #coding:gbk l=['我'.decode('gbk'),'我'. ...
- javascript是什么?
JavaScript 是脚本语言 JavaScript 是一种轻量级的编程语言. JavaScript 是可插入 HTML 页面的编程代码. JavaScript 插入 HTML 页面后,可由全部的现 ...
- SQL FULL OUTER JOIN 关键字
SQL FULL OUTER JOIN 关键字 SQL FULL OUTER JOIN 关键字 FULL OUTER JOIN 关键字只要左表(table1)和右表(table2)其中一个表中存在匹配 ...
- 基于Spring-SpringMVC-Mybatis的简单样例
复习下 好久没搞过撸过代码了! 这个样例包括一个完整的增删改查! 源代码地址http://download.csdn.net/detail/wangdianyong/8909903
- POJ 1061 青蛙的约会(扩展GCD求模线性方程)
题目地址:POJ 1061 扩展GCD好难懂.. 看了半天.最终把证明什么的都看明确了. .推荐一篇博客吧(戳这里),讲的真心不错.. 直接上代码: #include <iostream> ...
- Redis Server分布式缓存编程
这篇文章我将介绍如果用最简洁的方式配置Redis Server, 以及如何使用C#和它交互编程 一. 背景介绍 Redis是最快的key-value分布式缓存之一 缺点: 没有本地数据缓冲, 目前还没 ...
- grep命令最经常使用的功能总结
1. grep最简单的用法,匹配一个词:grep word filename 2. 能够从多个文件里匹配:grep word filename1 filenam2 filename3 3. 能够使用正 ...
- MVC+ZTree实现对树的CURD及拖拽操作
上一讲中,我们学习了如何使用zTree对一棵大树(大数据量的树型结构的数据表,呵呵,名称有点绕,但说的是事实)进行异步加载,今天这讲,我们来说说,如何去操作这棵大树,无非就是添加子节点,删除节点,编辑 ...