首先,我们发现,因为是无向图,所以相连的点之间是有“依赖性”的,所以不能直接用dp求解。

因为是xor,所以按位处理,于是列线性方程组,设$ x[i] $为点i到n异或和为1的期望,因为从1到n和从n到1一样,所以选择倒着推,即,

if(deg[e[i].va]==0)

\[x[u]=\sum_{v}^{v\subset son(u)}\frac{x[v]}{deg[i]}
\]

else

\[x[u]=\sum_{v}^{v\subset son(u)}\frac{1-x[v]}{deg[i]}
\]

列n元n次方程组高斯消元求解即可

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=105,M=100005;
int n,m,h[N],cnt,in[N];
double f[N][N],ans;
struct qwe
{
int ne,to,va;
}e[M<<1];
void add(int u,int v,int w)
{
cnt++;
in[u]++;
e[cnt].ne=h[u];
e[cnt].to=v;
e[cnt].va=w;
h[u]=cnt;
}
void gaosi()
{
for(int i=1;i<=n;i++)
{
int id=i;
double mx=0.0;
for(int j=i;j<=n;j++)
if(fabs(f[j][i])>mx)
id=j,mx=fabs(f[j][i]);
if(id!=i)
for(int j=1;j<=n+1;j++)
swap(f[id][j],f[i][j]);
double t=f[i][i];
for(int j=1;j<=n+1;j++)
f[i][j]/=t;
for(int j=1;j<=n;j++)
if(j!=i)
{
double t=f[j][i];
for(int k=1;k<=n+1;k++)
f[j][k]-=t*f[i][k];
}
}
}
int main()
{
scanf("%d%d",&n,&m);
for (int i=1,x,y,z;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
if (x!=y)
add(y,x,z);
}
for(int i=0;i<=30;i++)
{
memset(f,0,sizeof(f));
for(int u=1;u<=n-1;u++)
{
f[u][u]=1.0;
for(int j=h[u];j;j=e[j].ne)
{
if(e[j].va&(1<<i))
f[u][e[j].to]+=1.0/in[u],f[u][n+1]+=1.0/in[u];
else
f[u][e[j].to]-=1.0/in[u];
}
}
f[n][n]=1.0;
gaosi();
ans+=(f[1][n+1])*(1<<i);
}
printf("%.3lf\n",ans);
return 0;
}

bzoj 2337 [HNOI2011]XOR和路径【高斯消元+dp】的更多相关文章

  1. BZOJ 2337: [HNOI2011]XOR和路径( 高斯消元 )

    一位一位考虑异或结果, f(x)表示x->n异或值为1的概率, 列出式子然后高斯消元就行了 --------------------------------------------------- ...

  2. BZOJ 2337: [HNOI2011]XOR和路径 [高斯消元 概率DP]

    2337: [HNOI2011]XOR和路径 题意:一个边权无向连通图,每次等概率走向相连的点,求1到n的边权期望异或和 这道题和之前做过的高斯消元解方程组DP的题目不一样的是要求期望异或和,期望之间 ...

  3. BZOJ2337:[HNOI2011]XOR和路径(高斯消元)

    Description 给定一个无向连通图,其节点编号为 1 到 N,其边的权值为非负整数.试求出一条从 1 号节点到 N 号节点的路径,使得该路径上经过的边的权值的“XOR 和”最大.该路径可以重复 ...

  4. BZOJ2337: [HNOI2011]XOR和路径(高斯消元,期望)

    解题思路: Xor的期望???怕你不是在逗我. 按为期望,新技能get 剩下的就是游走了. 代码: #include<cmath> #include<cstdio> #incl ...

  5. 【概率DP/高斯消元】BZOJ 2337:[HNOI2011]XOR和路径

    2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 682  Solved: 384[Submit][Stat ...

  6. BZOJ 2337 XOR和路径 | 高斯消元 期望 位运算

    BZOJ 2337 XOR和路径 题解 这道题和游走那道题很像,但又不是完全相同. 因为异或,所以我们考虑拆位,分别考虑每一位: 设x[u]是从点u出发.到达点n时这一位异或和是1的概率. 对于所有这 ...

  7. bzoj 2337: [HNOI2011]XOR和路径

    Description Input Output Sample Input Sample Output HINT Source Day2 终于把这个史前遗留的坑给填了... 首先异或的话由位无关性,可 ...

  8. ●BZOJ 2337 [HNOI2011]XOR和路径

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2337题解: 概率dp, 因为异或的每一位之间没有关系,我们就依次考虑每一位k.(即边权要么为 ...

  9. BZOJ 2337 [HNOI2011]XOR和路径 ——期望DP

    首先可以各位分开求和 定义$f(i)$表示从i到n的期望值,然后经过一些常识,发现$f(n)=1$的时候的转移,然后直接转移,也可以找到$f(n)=0$的转移. 然后高斯消元31次就可以了. #inc ...

随机推荐

  1. BitmapFactory.Options对图片进行缩放

    package com.pingyijinren.helloworld.activity; import android.graphics.Bitmap; import android.graphic ...

  2. SQL SERVER 2012 第三章 使用INSERT语句添加数据

    INSERT [TOP (<expression>) [PERCENT] [INTO] <tabular object>[(column list)][OUTPUT <o ...

  3. 洛谷—— P1098 字符串的展开

    https://www.luogu.org/problem/show?pid=1098 题目描述 在初赛普及组的“阅读程序写结果”的问题中,我们曾给出一个字符串展开的例子:如果在输入的字符串中,含有类 ...

  4. [Bzoj5179][Jsoi2011]任务调度(左偏树)

    5179: [Jsoi2011]任务调度 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 5  Solved: 4[Submit][Status][Di ...

  5. HDU 1041

    题意: 给原始序列1 给定变化规则是,对于原来的序列每一个0前边插入1,每个1前边插入0. 问原始序列经过n次变化之后有多少对相邻的0. 规律题: 从第二次开始 当第奇数次变化之后,数量变成原来数量的 ...

  6. 2017CodeM初赛A场

    A.最长树链(loj6159) 分析: 对于每个质因数,取出所有是它倍数的点组成一个树,然后找最长路径 每个数操作次数是其质因数的个数 所以总的复杂度不超过O(nlogA) B.二分图染色(loj61 ...

  7. JAVA数组去除重复数据

    一.用List集合实现   , , , , , , ,}; List<Integer> list = new ArrayList<Integer>(); ; i<str. ...

  8. Rust 1.7.0 匹配器 match 的简介和使用

    使用过正則表達式的人应该都知道 matcher ,通过 matcher 匹配器运算正則表達式,完毕一系列的匹配规则. 在Rust 中 没有 switch 语句.matcher 就是 switch 的一 ...

  9. 微信小程序之 Swiper(轮播图)

    1.逻辑层 mine.js // pages/mine/mine.js Page({ /** * 页面的初始数据 */ data: { /*轮播图 配置*/ imgUrls: [ 'http://im ...

  10. 编程基础知识——Java JNI开发流程(2)

    android中使用jni调用本地C++库 android平台上的本地库文件后缀 .so.类似windows上的dll文件. 要在android上使用jni.首先须要下载android ndk. 操作 ...