4758: [Usaco2017 Jan]Subsequence Reversal

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 76  Solved: 52
[Submit][Status][Discuss]

Description

Farmer John is arranging his NN cows in a line to take a photo (1≤N≤50). The height of the iith co
w in sequence is a(i), and Farmer John thinks it would make for an aesthetically pleasing photo if t
he cow lineup has a large increasing subsequence of cows by height.To recall, a subsequence is a sub
set a(i1),a(i2),…,a(ik)) of elements from the cow sequence, found at some series of indices i1<i2<
…<ik, We say the subsequence is increasing if a(i1)≤a(i2)≤…≤a(ik).FJ would like there to be a l
ong increasing subsequence within his ordering of the cows. In order to ensure this, he allows himse
lf initially to choose any subsequence and reverse its elements.
 
For example, if we had the list
 
1 6 2 3 4 3 5 3 4
We can reverse the chosen elements
 
1 6 2 3 4 3 5 3 4
  ^         ^ ^ ^
to get
 
1 4 2 3 4 3 3 5 6
  ^         ^ ^ ^
Observe how the subsequence being reversed ends up using the same indices as it initially occupied, 
leaving the other elements unchanged.Please find the maximum possible length of an increasing subseq
uence, given that you can choose to reverse an arbitrary subsequence once.
给定一个长度为N的序列,允许翻转一个子序列,求最长不下降子序列长度。n和数字都<=50
 

Input

The first line of input contains N. The remaining N lines contain a(1)…a(N),
each an integer in the range 1…50.
 

Output

Output the number of elements that can possibly form a longest increasing subsequence 
after reversing the contents of at most one subsequence.
 

Sample Input

9
1
2
3
9
5
6
8
7
4

Sample Output

9

HINT

 

Source

Platinum

/*
感觉这道题没完全懂
开始设状态毫无思路,只知道可能很多维......
想到可能是道区间dp,emm那就考虑一段区间[l,r]怎么维护里面交换那些数呢?
发现可以用值域这个东西把数给框住。又,反转区间肯定是越靠右的反转到越靠左位置。
那么由小区间推大区间时,只需要判断端点处包不包括在这一次的交换中即可。
所以可dp[i][j][L][R]为区间[i,j]里面min(ak) >= L, max(ak) <= R时,反转一次的最长不下降子序列。
转移见代码。
*/
#include<bits/stdc++.h> #define N 51 using namespace std;
int n,a[N],ans;
int dp[N][N][N][N]; inline int read()
{
int x=,f=;char c=getchar();
while(c>''||c<''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} int main()
{
n=read();
for(int i=; i <= n; ++i) a[i]=read(),dp[i][i][a[i]][a[i]]=; for(int len=; len <= n; ++len) for(int i=; i+len- <= n; ++i)//当前区间
{
int j=i+len-;
for(int l=; l <= ; ++l) for(int L=; L+l- <= ; ++L)//当前值域
{
int R=L+l-;
ans=dp[i][j][L][R];
ans=max(ans,max(dp[i+][j][L][R],dp[i][j-][L][R]));
ans=max(ans,max(dp[i][j][L+][R],dp[i][j][L][R-]));
dp[i][j][L][R]=ans;
//copy小区间的答案
dp[i][j][min(L,a[i])][R]=max(dp[i][j][min(L,a[i])][R],dp[i+][j][L][R]+(a[i] <= L));
dp[i][j][L][max(R,a[j])]=max(dp[i][j][L][max(R,a[j])],dp[i][j-][L][R]+(a[j] >= R));
dp[i][j][min(L,a[i])][max(R,a[j])]=max(dp[i][j][min(L,a[i])][max(R,a[j])],dp[i+][j-][L][R]+(a[j] >= R)+(a[i] <= L));
//a[i]与a[j]不交换
dp[i][j][min(L,a[j])][R]=max(dp[i][j][min(L,a[j])][R],dp[i+][j-][L][R]+(a[j] <= L));
dp[i][j][L][max(R,a[i])]=max(dp[i][j][L][max(R,a[i])],dp[i+][j-][L][R]+(a[i] >= R));
dp[i][j][min(L,a[j])][max(R,a[i])]=max(dp[i][j][min(L,a[j])][max(R,a[i])],dp[i+][j-][L][R]+(a[i] >= R)+(a[j] <= L));
//a[i]与a[j]交换
}
}
cout<<dp[][n][][]<<endl;
return ;
}

bzoj4758: [Usaco2017 Jan]Subsequence Reversal(区间dp)的更多相关文章

  1. HDU Palindrome subsequence(区间DP)

    Palindrome subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/65535 K (Java/Oth ...

  2. [BZOJ4760][Usaco2017 Jan]Hoof, Paper, Scissors dp

    4760: [Usaco2017 Jan]Hoof, Paper, Scissors Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 136  Solv ...

  3. Palindrome subsequence(区间dp+容斥)

    In mathematics, a subsequence is a sequence that can be derived from another sequence by deleting so ...

  4. HDU 4632 Palindrome subsequence (区间DP)

    Palindrome subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65535 K (Java/ ...

  5. HDU 4632 Palindrome subsequence(区间dp)

    Palindrome subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65535 K (Java/ ...

  6. 【HDU4632 Palindrome subsequence】区间dp

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4632 题意:给你一个序列,问你该序列中有多少个回文串子序列,可以不连续. 思路:dp[i][j]表示序 ...

  7. 区间dp提升复习

    区间\(dp\)提升复习 不得不说这波题真的不简单... 技巧总结: 1.有时候转移可以利用背包累和 2.如果遇到类似区间添加限制的题可以直接把限制扔在区间上,每次只考虑\([l,r]\)被\([i, ...

  8. HDU4632:Palindrome subsequence(区间DP)

    Problem Description In mathematics, a subsequence is a sequence that can be derived from another seq ...

  9. BZOJ 1719--[Usaco2006 Jan] Roping the Field 麦田巨画(几何&区间dp)

    1719: [Usaco2006 Jan] Roping the Field 麦田巨画 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 82  Solved ...

随机推荐

  1. Apache 文件根目录设置修改方法 (Document Root)

    最近在学习WordPress,使用appServ 在windows上搭建Php开发环境 在网上查找到的关于修改Apache服务器根目录的资料,对比学习,再此记录 在安装 Apache 时,系统会给定一 ...

  2. Java二维码的解码和编码

    原文:http://www.open-open.com/code/view/1430906793866 import java.io.File; import java.util.Hashtable; ...

  3. Codeforces Round #258 (Div. 2) B. Sort the Array(简单题)

    题目链接:http://codeforces.com/contest/451/problem/B --------------------------------------------------- ...

  4. (转)Delphi2009初体验 - 语言篇 - 智能指针(Smart Pointer)的实现

     转载:http://www.cnblogs.com/felixYeou/archive/2008/08/27/1277250.html 快速导航 一. 回顾历史二. 智能指针简介三. Delphi中 ...

  5. Linux上设置RAID 10

    RAID 10(又叫RAID 1+0或镜像条带)阵列结合了RAID 0和RAID 1两者的功能特性,从而提供了高性能.容错的磁盘输入/输出操作.在RAID 0中,读取/写入操作跨多个驱动器并路执行:在 ...

  6. VC++ VS2010 error LNK1123 转换到 COFF 期间失败 怎么办

    1 无法输出Hello world   2 点击项目-属性,打开属性页   3 配置属性-清单工具-输入和输出-嵌入清单改成否   4 找出计算机中的所有cvtres.exe,删掉早期的,只留最新版的 ...

  7. Tomcat-公布WEB应用

    1.定义Context 进入管理WEB应用的URL是http://localhost:8080/manager/html. username与password的设置:打开tomcat安装文件夹中的co ...

  8. mtk刷机错误汇总

    MTK常见错误解读与解决方法: 1.刷机过了红条,到了紫色条卡住.(错误代码4008) 解决方法:这种情况出现的话,大家可以把电池拿下来,然后重新安装上,进入REC后选择关机.然后重新刷. 2.驱动安 ...

  9. 一颗ARM架构芯片的软硬件构成

    硬件和软件是一颗芯片系统互相依存的两大部分.本文总结了一颗芯片的软硬件组成.作为对芯片的入门级概括吧. (一)硬件 主控CPU:运算和控制核心.基带芯片基本构架採用微处理器+数字信号处理器(DSP)的 ...

  10. ACdream原创群赛(13)のwuyiqi退役专场 C True love

    True love Time Limit: 4000/2000 MS (Java/Others)     Memory Limit:128000/64000 KB (Java/Others) Prob ...