传送门

题意

分析

\(\sum_i^n(n\%i)=\sum_i^n(n-i*n/i)=n^2-\sum_i^ni*n/i\)

\(=\sum r\sum_i^ni[n/i==r]\)

可以证明r不会超过\(\sqrt n\)个,复杂度O(\(\sqrt n\))

注意乘法爆long long的处理

代码

#include <bits/stdc++.h>
using namespace std; //efine ll long long
#define F(i,a,b) for(int i=a;i<=b;++i)
#define R(i,a,b) for(int i=a;i<b;++i)
#define mem(a,b) memset(a,b,sizeof(a))
#define INF 0x3f3f3f3f3f3f3f3f
#define ll long long
const ll mod = 1e9+7;
const ll M = 5e8+4;
ll n,ans;
int main()
{
scanf("%lld",&n);
ans=n%mod*(n%mod)%mod;
for(ll i=1,j;i<=n;i=j+1)
{
j=n/(n/i);
ans = ans-(i + j)%mod * ((j - i + 1)%mod)%mod * M % mod * (n/i) % mod;
while(ans<0) ans+=mod;
}
printf("%I64d\n",ans);
return 0;
}

51nod 1225:余数之和的更多相关文章

  1. 51nod 1225 余数之和 数论

    1225 余数之和 题目连接: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1225 Description F(n) ...

  2. 51Nod 1225 余数之和 —— 分区枚举

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1225 1225 余数之和  基准时间限制:1 秒 空间限制:1 ...

  3. 51Nod 1225 余数之和 [整除分块]

    1225 余数之和 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 F(n) = (n % 1) + (n % 2) + (n % 3) + ... ...

  4. 51nod 1225 余数的和 数学

    1225 余数之和 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 F(n) = (n % 1) + (n % 2) + (n % 3) + ... ...

  5. 51nod1225 余数之和

    打表可以看出规律.分块求就可以了. #include<cstdio> #include<cstring> #include<cctype> #include< ...

  6. BZOJ 1257: [CQOI2007]余数之和sum

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 3769  Solved: 1734[Submit][St ...

  7. 【BZOJ1257】【CQOI2007】余数之和sum

    Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数.例如j(5, ...

  8. [原博客] BZOJ 1257 [CQOI2007] 余数之和

    题目链接题意: 给定n,k,求 ∑(k mod i) {1<=i<=n} 其中 n,k<=10^9. 即 k mod 1 + k mod 2 + k mod 3 + … + k mo ...

  9. bzoj 1257: [CQOI2007]余数之和sum 数学 && 枚举

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 1779  Solved: 823[Submit][Sta ...

随机推荐

  1. Tomcat载入两次问题

    前提介绍: 1.某个应用Dragon放置路径:/opt/apache-tomcat-7.0.47/webapps/Dragon 2.Tomcat的server.xml部分配置信息例如以下:    &l ...

  2. 走入asp.net mvc不归路:[6]linq常见用法

    asp.net mvc结合linq,先不说性能问题,对于增删查改的操作还是相当方便的.以下我们就来介绍一下linq在asp.net mvc的Controller中的常见用法. 1 首先来看看整个数据表 ...

  3. xcode编译 debug版或release 版

    编译debug版本或release 版本 在Run和Stop按钮的右边有一个工程名 点击工程名,选择Manage Schemes 选择Edit... 左侧选择Run ProjectName.app 右 ...

  4. 【读书笔记】iOS-GCD-用法

    代码: -(void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event { dispatch_async(dispatch_get_gl ...

  5. 更多的使用自定义元素(CustomElement)。

    更多的使用自定义元素(CustomElement).

  6. XMU C语言程序设计实践(5)

    •       使用动态链表完成一个简单的商品库存信息管理系统. •       商品信息包括如下字段:商品号.商品名称.商品库存 •       函数 create:接收用户输入的商品号和商品名称的 ...

  7. Spring Boot 整合Servlet

    冷知识,几乎用不到 在spring boot中使用Servlet有两种实现方法: 方法一: 正常创建servlet,然后只用注解@ServletComponentScan package clc.us ...

  8. SDUT OJ 图练习-BFS-从起点到目标点的最短步数 (vector二维数组模拟邻接表+bfs , *【模板】 )

    图练习-BFS-从起点到目标点的最短步数 Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描述 在古老的魔兽传说中,有两个军团,一个叫天 ...

  9. POJ3273 Monthly Expense —— 二分

    题目链接:http://poj.org/problem?id=3273   Monthly Expense Time Limit: 2000MS   Memory Limit: 65536K Tota ...

  10. CentOS7 安装和配置 mysql5.7

    1.下载 mysql源安装包 wget https://dev.mysql.com/get/mysql57-community-release-el7-11.noarch.rpm 2.安装mysql源 ...