POJ3189 Steady Cow Assignment —— 二分图多重匹配/最大流 + 二分
题目链接:https://vjudge.net/problem/POJ-3189
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 6979 | Accepted: 2418 |
Description
FJ would like to rearrange the cows such that the cows are as equally happy as possible, even if that means all the cows hate their assigned barn.
Each cow gives FJ the order in which she prefers the barns. A cow's happiness with a particular assignment is her ranking of her barn. Your job is to find an assignment of cows to barns such that no barn's capacity is exceeded and the size of the range (i.e., one more than the positive difference between the the highest-ranked barn chosen and that lowest-ranked barn chosen) of barn rankings the cows give their assigned barns is as small as possible.
Input
Lines 2..N+1: Each line contains B space-separated integers which are exactly 1..B sorted into some order. The first integer on line i+1 is the number of the cow i's top-choice barn, the second integer on that line is the number of the i'th cow's second-choice barn, and so on.
Line N+2: B space-separated integers, respectively the capacity of the first barn, then the capacity of the second, and so on. The sum of these numbers is guaranteed to be at least N.
Output
Sample Input
6 4
1 2 3 4
2 3 1 4
4 2 3 1
3 1 2 4
1 3 4 2
1 4 2 3
2 1 3 2
Sample Output
2
Hint
Each cow can be assigned to her first or second choice: barn 1 gets cows 1 and 5, barn 2 gets cow 2, barn 3 gets cow 4, and barn 4 gets cows 3 and 6.
Source
题解:
题意:有n头牛, 安排到m个牲棚里住。每头牛对每个牲棚都有一个好感度排名。主人为了使得这些牛尽可能满意,规定了获得最低好感度的牛和获得最高好感度的牛的好感度差值最小(即好感度跨度最小)。
1.二分跨度。然后对于每个跨度,枚举最低好感度(最高好感度也就可以求出),然后开始建图:如果某头牛对某个牲棚的好感度在这个范围内,则连上边;否则不连。
2.用二分图多重匹配或者最大流,求出是否每头牛都可以被安排到某个牲棚中。如果可以,则缩小跨度,否则增大跨度。
多重匹配:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <sstream>
#include <algorithm>
using namespace std;
const int INF = 2e9;
const int MOD = 1e9+;
const int MAXM = +;
const int MAXN = 1e3+; int uN, vN, Rank[MAXN][MAXM];
int num[MAXM], linker[MAXM][MAXN];
bool g[MAXN][MAXM], used[MAXM]; bool dfs(int u)
{
for(int v = ; v<=vN; v++)
if(g[u][v] && !used[v])
{
used[v] = true;
if(linker[v][]<num[v])
{
linker[v][++linker[v][]] = u;
return true;
}
for(int i = ; i<=num[v]; i++)
if(dfs(linker[v][i]))
{
linker[v][i] = u;
return true;
}
}
return false;
} bool hungary()
{
for(int i = ; i<=vN; i++)
linker[i][] = ;
for(int u = ; u<=uN; u++)
{
memset(used, false, sizeof(used));
if(!dfs(u)) return false;
}
return true;
} bool test(int mid)
{
for(int down = ; down<=vN-mid+; down++)
{
int up = down+mid-;
memset(g, false, sizeof(g));
for(int i = ; i<=uN; i++)
for(int j = down; j<=up; j++)
g[i][Rank[i][j]] = true; if(hungary()) return true;
}
return false;
} int main()
{
while(scanf("%d%d", &uN, &vN)!=EOF)
{
for(int i = ; i<=uN; i++)
for(int j = ; j<=vN; j++)
scanf("%d", &Rank[i][j]); for(int i = ; i<=vN; i++)
scanf("%d", &num[i]); int l = , r = vN;
while(l<=r)
{
int mid = (l+r)>>;
if(test(mid))
r = mid - ;
else
l = mid + ;
}
printf("%d\n", l);
}
}
最大流:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <sstream>
#include <algorithm>
using namespace std;
const int INF = 2e9;
const int MOD = 1e9+;
const int MAXM = +;
const int MAXN = 2e3+; struct Edge
{
int to, next, cap, flow;
}edge[MAXN*MAXN];
int tot, head[MAXN]; int uN, vN, Rank[MAXN][MAXM], num[MAXM];
int gap[MAXN], dep[MAXN], pre[MAXN], cur[MAXN]; void add(int u, int v, int w)
{
edge[tot].to = v; edge[tot].cap = w; edge[tot].flow = ;
edge[tot].next = head[u]; head[u] = tot++;
edge[tot].to = u; edge[tot].cap = ; edge[tot].flow = ;
edge[tot].next = head[v]; head[v] = tot++;
} int sap(int start, int end, int nodenum)
{
memset(dep, , sizeof(dep));
memset(gap, , sizeof(gap));
memcpy(cur, head, sizeof(head));
int u = pre[start] = start, maxflow = ,aug = INF;
gap[] = nodenum;
while(dep[start]<nodenum)
{
loop:
for(int i = cur[u]; i!=-; i = edge[i].next)
{
int v = edge[i].to;
if(edge[i].cap-edge[i].flow && dep[u]==dep[v]+)
{
aug = min(aug, edge[i].cap-edge[i].flow);
pre[v] = u;
cur[u] = i;
u = v;
if(v==end)
{
maxflow += aug;
for(u = pre[u]; v!=start; v = u,u = pre[u])
{
edge[cur[u]].flow += aug;
edge[cur[u]^].flow -= aug;
}
aug = INF;
}
goto loop;
}
}
int mindis = nodenum;
for(int i = head[u]; i!=-; i = edge[i].next)
{
int v=edge[i].to;
if(edge[i].cap-edge[i].flow && mindis>dep[v])
{
cur[u] = i;
mindis = dep[v];
}
}
if((--gap[dep[u]])==)break;
gap[dep[u]=mindis+]++;
u = pre[u];
}
return maxflow;
} bool test(int mid)
{
for(int down = ; down<=vN-mid+; down++)
{
tot = ;
memset(head, -, sizeof(head));
for(int i = ; i<=uN; i++)
{
add(, i, );
int up = down+mid-;
for(int j = down; j<=up; j++)
add(i, uN+Rank[i][j], );
}
for(int i = ; i<=vN; i++)
add(uN+i, uN+vN+, num[i]); int maxflow = sap(, uN+vN+, uN+vN+);
if(maxflow==uN) return true;
}
return false;
} int main()
{
while(scanf("%d%d", &uN, &vN)!=EOF)
{
for(int i = ; i<=uN; i++)
for(int j = ; j<=vN; j++)
scanf("%d", &Rank[i][j]); for(int i = ; i<=vN; i++)
scanf("%d", &num[i]); int l = , r = vN;
while(l<=r)
{
int mid = (l+r)>>;
if(test(mid))
r = mid - ;
else
l = mid + ;
}
printf("%d\n", l);
}
}
POJ3189 Steady Cow Assignment —— 二分图多重匹配/最大流 + 二分的更多相关文章
- POJ3189_Steady Cow Assignment(二分图多重匹配/网络流+二分构图)
解题报告 http://blog.csdn.net/juncoder/article/details/38340447 题目传送门 题意: B个猪圈,N头猪.每头猪对每一个猪圈有一个惬意值.要求安排这 ...
- POJ 3189——Steady Cow Assignment——————【多重匹配、二分枚举区间长度】
Steady Cow Assignment Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I ...
- POJ2112 Optimal Milking —— 二分图多重匹配/最大流 + 二分
题目链接:https://vjudge.net/problem/POJ-2112 Optimal Milking Time Limit: 2000MS Memory Limit: 30000K T ...
- POJ2289 Jamie's Contact Groups —— 二分图多重匹配/最大流 + 二分
题目链接:https://vjudge.net/problem/POJ-2289 Jamie's Contact Groups Time Limit: 7000MS Memory Limit: 6 ...
- POJ3189 Steady Cow Assignment
Steady Cow Assignment Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6817 Accepted: ...
- hdu3605 Escape 二分图多重匹配/最大流
2012 If this is the end of the world how to do? I do not know how. But now scientists have found tha ...
- Steady Cow Assignment POJ - 3189 (最大流+匹配)
Farmer John's N (1 <= N <= 1000) cows each reside in one of B (1 <= B <= 20) barns which ...
- Steady Cow Assignment---poj3189(多重匹配+二分)
题目链接:http://poj.org/problem?id=3189 题意:有n头牛,B个牛棚,每头牛对牛棚都有一个喜欢度,接下来输入N*B的矩阵第i行第j列的数x表示:第i头牛第j喜欢的是x; 第 ...
- POJ 2289 Jamie's Contact Groups & POJ3189 Steady Cow Assignment
这两道题目都是多重二分匹配+枚举的做法,或者可以用网络流,实际上二分匹配也就实质是网络流,通过枚举区间,然后建立相应的图,判断该区间是否符合要求,并进一步缩小范围,直到求出解.不同之处在对是否满足条件 ...
随机推荐
- 如何将表的行数赋值给变量(MySQL)
delimiter $$ drop procedure if exists test_at $$ create definer=root@localhost procedure test_at() b ...
- Python requests.post方法中data与json参数区别
在通过requests.post()进行POST请求时,传入报文的参数有两个,一个是data,一个是json. data与json既可以是str类型,也可以是dict类型. 区别: 1.不管json是 ...
- 洛谷 P3800 Power收集
题目背景 据说在红雾异变时,博丽灵梦单身前往红魔馆,用十分强硬的手段将事件解决了. 然而当时灵梦在Power达到MAX之前,不具有“上线收点”的能力,所以她想要知道她能收集多少P点,然而这个问题她答不 ...
- 骑士精神 (codevs 2449)
题目描述 Description 在一个5×5的棋盘上有12个白色的骑士和12个黑色的骑士, 且有一个空位.在任何时候一个骑士都能按照骑士的走法(它可以走到和它横坐标相差为1,纵坐标相差为2或者横坐标 ...
- 【HDOJ6330】Visual Cube(模拟)
题意: 思路: import java.util.Scanner; public class Main { public static void main(String args[]) { Scann ...
- 【linux】ls与ll区别
ll是一个事先被定义好的别名(alias).别名就是赋予一条命令或者一列命令的名称.可以将别名作为缩写的同义词.在我的Ubuntu系统上,~/.bashrc文件中有这么一条语句alias ll='ls ...
- Reactor和Proactor模式的讲解(关于异步,同步,阻塞与非阻塞)
在高性能的I/O设计中,有两个比较著名的模式Reactor和Proactor模式,其中Reactor模式用于同步I/O,而Proactor运用于异步I/O操作. 在比较这两个模式之前,我们首先的搞明白 ...
- loj6171/bzoj4899 记忆的轮廊(期望dp+优化)
题目: https://loj.ac/problem/6171 分析: 设dp[i][j]表示从第i个点出发(正确节点),还可以有j个存档点(在i点使用一个存档机会),走到终点n的期望步数 那么 a[ ...
- 前后端分离项目shiro的未登录和权限不足
在前后端分离的项目中.前端代码和后端代码几乎不在同一个目录下,甚至不是在一台服务器上:我这个项目部署在linux.同一台服务器,不同目录下:所有的页面跳转由前台路由,后台只是提供返回的数据: 干货↓ ...
- MongoDB学习day05--MongDB开启权限验证,创建用户
一.MongoDB账户权限配置 1.创建超级管理员用户 use admin db.createUser({ user:'admin', pwd:'123456', roles:[{role:'root ...