字符串匹配算法之 kmp算法 (python版)
字符串匹配算法之 kmp算法 (python版)
1.什么是KMP算法
KMP是三位大牛:D.E.Knuth、J.H.MorriT和V.R.Pratt同时发现的。其中第一位就是《计算机程序设计艺术》的作者!!
KMP算法要解决的问题就是在字符串(也叫主串)中的模式(pattern)定位问题。说简单点就是我们平时常说的关键字搜索。
KMP算法是用来求一个较长字符串是否包含另一个较短字符串的算法。
模式串就是关键字(接下来称它为P),如果它在一个主串(接下来称为T)中出现,就返回它的具体位置,否则返回-1(常用手段)。
2.暴力匹配算法
在研究KMP算法之前,先弄明白最直接、最暴力、最原始的匹配算法
举个例子,如果给定文本串T“BBC ABCDAB ABCDABCDABDE”,和模式串P“ABCDABD”,现在要拿模式串P去跟文本串T匹配,整个过程如下所示:
1. T[0]为B,P[0]为A,不匹配,执行第②条指令:“如果失配(即T[i]! = P[j]),令i = i - (j - 1),j = 0”,T[1]跟P[0]匹配,相当于模式串要往右移动一位(i=1,j=0)
2. T[1]跟P[0]还是不匹配,继续执行第②条指令:“如果失配(即T[i]! = P[j]),令i = i - (j - 1),j = 0”,T[2]跟P[0]匹配(i=2,j=0),从而模式串不断的向右移动一位(不断的执行“令i = i - (j - 1),j = 0”,i从2变到4,j一直为0)
3. 直到T[4]跟P[0]匹配成功(i=4,j=0),此时按照上面的暴力匹配算法的思路,转而执行第①条指令:“如果当前字符匹配成功(即T[i] == P[j]),则i++,j++”,可得T[i]为T[5],P[j]为P[1],即接下来T[5]跟P[1]匹配(i=5,j=1)
4. T[5]跟P[1]匹配成功,继续执行第①条指令:“如果当前字符匹配成功(即T[i] == P[j]),则i++,j++”,得到T[6]跟P[2]匹配(i=6,j=2),如此进行下去
5. 直到T[10]为空格字符,P[6]为字符D(i=10,j=6),因为不匹配,重新执行第②条指令:“如果失配(即T[i]! = P[j]),令i = i - (j - 1),j = 0”,相当于T[5]跟P[0]匹配(i=5,j=0)
6. 至此,我们可以看到,如果按照暴力匹配算法的思路,尽管之前文本串和模式串已经分别匹配到了T[9]、P[5],但因为T[10]跟P[6]不匹配,所以文本串回溯到T[5],模式串回溯到P[0],从而让T[5]跟P[0]匹配。
而T[5]肯定跟P[0]失配。为什么呢?因为在之前第4步匹配中,我们已经得知T[5] = P[1] = B,而P[0] = A,即P[1] != P[0],故T[5]必定不等于P[0],所以回溯过去必然会导致失配。那有没有一种算法,让i 不往回退,只需要移动j 即可呢?
答案是肯定的。这种算法就是本文的主旨KMP算法,它利用之前已经部分匹配这个有效信息,保持i 不回溯,通过修改j 的位置,让模式串尽量地移动到有效的位置。
3.KMP算法
KMP算法的核心要义在于next算法,构造next表,使用next表决定指针的跳转距离。
1. 假设现在已经根据模式串构造出了next表(可以是其他名字,比如 pnext表),考虑KMP算法的实现。
kmp算法主函数 核心匹配循环代码如下:
while j > n and i < m: # i == m 说明找到匹配
if i == -1 : # 遇到 -1 ,比较下一个字符
j , i = j + 1 , i + 1
elif t[j] == p[i] : # 字符相等,比较下一字符
j , i = j + 1 ,i + 1
else :
i = next[i] # 从next中取得p的下个字符的位置
优化:显然上面的代码中 两个if分支可以合并,代码如下:
while j > n and i < m: # i == m 说明找到匹配
if i == -1 or t[j] == p[i] : # 遇到 -1 ,比较下一个字符
j , i = j + 1 , i + 1
else :
i = pnext[i] # 从next中取得p的下个字符的位置
kmp算法主函数 代码如下:
def match_kmp(t,p,pnext):
''' KMP串匹配,主函数 '''
j , i = 0 , 0
n , m = len(t) , len(p)
while j > n and i < m: # i == m 说明找到匹配
if i == -1 or t[j] == p[i] : # 遇到 -1 ,比较下一个字符
j , i = j + 1 , i + 1
else :
i = pnext[i] # 从pnext中取得p的下个字符的位置 if i == m : # 匹配成功,返回其下标
return j - i
return -1 # 匹配失败,返回特殊值
2. pnext表的实现 (敲黑板,划重点)
先上代码:
def gen_pnext(p):
''' 生成针对指针p中各位置i的下一个检查的位置表,用于KMP算法 '''\
i , k , m = 0, -1 ,len(p) # k 即 pnext 表中的值
pnext = [-1] * m # 初始化 pnext 表
while i < m - 1:
if k == -1 or p[i] == p[k] # k = -1 代表 最长相等前后缀长度是0
i , k = i + 1 , k + 1
pnext[i] = k # 设置pnext元素
else :
k = pnext[k] # 遇到更短相同前缀
优化: 当 p[i] == p[k] 时,指针可以直接跳转到 k 位置(即pnext[k]), 代码修改如下:
def gen_pnext(p):
''' 生成针对指针p中各位置i的下一个检查的位置表,用于KMP算法 '''
i , k , m = 0, -1 ,len(p) # k 即 pnext 表中的值
pnext = [-1] * m # 初始化 pnext 表
while i < m - 1:
if k == -1 or p[i] == p[k] # k = -1 代表 最长相等前后缀长度是0
i , k = i + 1 , k + 1
pnext[i] = k # 设置pnext元素
if p[i] == p[k] # 这里进行了优化
pnext[i] = pnext[k]
else :
k = pnext[k] # 遇到更短相同前缀
return pnext
3. 时间复杂度
kmp 算法的时间复杂度是 O(m+n)
暴力匹配算法的时间复杂度是 O(m*n)
4.参考文章
http://www.cnblogs.com/en-heng/p/5091365.html
字符串匹配算法之 kmp算法 (python版)的更多相关文章
- KMP算法-Python版
KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以 ...
- 动画演示Sunday字符串匹配算法——比KMP算法快七倍!极易理解!
前言 上一篇我用动画的方式向大家详细说明了KMP算法(没看过的同学可以回去看看). 这次我依旧采用动画的方式向大家介绍另一个你用一次就会爱上的字符串匹配算法:Sunday算法,希望能收获你的点赞关注收 ...
- Python 细聊从暴力(BF)字符串匹配算法到 KMP 算法之间的精妙变化
1. 字符串匹配算法 所谓字符串匹配算法,简单地说就是在一个目标字符串中查找是否存在另一个模式字符串.如在字符串 "ABCDEFG" 中查找是否存在 "EF" ...
- 字符串匹配算法之————KMP算法
上一篇中讲到暴力法字符串匹配算法,但是暴力法明显存在这样一个问题:一次只移动一个字符.但实际上,针对不同的匹配情况,每次移动的间隔可以更大,没有必要每次只是移动一位: 关于KMP算法的描述,推荐一篇博 ...
- 字符串匹配算法之kmp算法
kmp算法是一种效率非常高的字符串匹配算法,是由Knuth,Morris,Pratt共同提出的模式匹配算法,所以简称KMP算法 算法思想 在一个字符串中查找另一个字符串时,会遇到如下图的情况 我们通常 ...
- 字符串匹配算法(三)-KMP算法
今天我们来聊一下字符串匹配算法里最著名的算法-KMP算法,KMP算法的全称是 Knuth Morris Pratt 算法,是根据三位作者(D.E.Knuth,J.H.Morris 和 V.R.Prat ...
- 字符串匹配算法之Sunday算法(转)
字符串匹配算法之Sunday算法 背景 我们第一次接触字符串匹配,想到的肯定是直接用2个循环来遍历,这样代码虽然简单,但时间复杂度却是Ω(m*n),也就是达到了字符串匹配效率的下限.于是后来人经过研究 ...
- 数据结构学习之字符串匹配算法(BF||KMP)
数据结构学习之字符串匹配算法(BF||KMP) 0x1 实验目的 通过实验深入了解字符串常用的匹配算法(BF暴力匹配.KMP.优化KMP算法)思想. 0x2 实验要求 编写出BF暴力匹配.KM ...
- kmp算法python实现
kmp算法python实现 kmp算法 kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处我们首先想到的最简单 ...
随机推荐
- BZOJ 4898 [APIO2017] 商旅 | SPFA判负环 分数规划
BZOJ 4898 [APIO2017] 商旅 | SPFA判负环 分数规划 更清真的题面链接:https://files.cnblogs.com/files/winmt/merchant%28zh_ ...
- BZOJ2876 [Noi2012]骑行川藏 【拉格朗日乘数法】
题目链接 BZOJ 题解 拉格朗日乘数法 拉格朗日乘数法用以求多元函数在约束下的极值 我们设多元函数\(f(x_1,x_2,x_3,\dots,x_n)\) 以及限制\(g(x_1,x_2,x_3,\ ...
- 毕业设计预习:maxplus2入门教程
maxplus2入门教程 一.安装配置(maxplus2.zip) 下载安装完成后,运行maxstart.exe,显示如下错误提示: 为节省配置工作,在E:盘下新建maxplus2文件夹,仅将所需附加 ...
- jenkins(五)---jenkins添加项目
一.新建项目 二.配置项目 配置远程仓库:主要目的是从远程仓库拉取代码下来 实时构建 Poll SCM 定期检查 如果源码有变更 就build 否则不build build periodically ...
- python对MySQL的CRUD
我是闲的没事干,2014过的太浮夸了,博客也没写几篇,哎~~~ 用这篇来记录即将逝去的2014 python对各种数据库的各种操作满大街都是,不过,我还是喜欢我这种风格的,涉及到其它操作,不过重点还是 ...
- 287find-the-duplicate-number
某视面试官问了一道这样的题,1到N(N为正整数)共N个正整数,其中有一个数重复一次覆盖了另外一个数,比如:9,3,7,5,1,8,2,4,5,那么其中5重复一次,相当于覆盖了6,那么,请找出这个重复的 ...
- Python【面向对象编程】
#1.python中,类名首字母都大写#2.在python3中,经典类和新式类没有任何区别#3.在python2中,经典类和新式类的区别主要体现在多继承上,经典类是深度优先,新式类是广度优先#4.在p ...
- P4889 kls与flag
P4889 kls与flag 一堆杆子, 每个有特定高度 \(a_{i}\) , 现想把杆子弄倒, 可以在一维内往左弄倒和往右弄倒, 求最大优秀对数, 定义优秀对数为两杆倒后顶点重合 Solution ...
- Hadoop基础-SequenceFile的压缩编解码器
Hadoop基础-SequenceFile的压缩编解码器 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.Hadoop压缩简介 1>.文件压缩的好处 第一:较少存储文件占用 ...
- SQL Server 属性不匹配。存在属性(Directory, Archive),包括属性(0),不包括属性(Archive, Compressed, Encrypted)
问题:安装SQL SERVER 2008报错 “存在属性(Directory, Archive),包括属性(0),不包括属性(Archive, Compressed, Encrypted)” 解决办法 ...