2809: [Apio2012]dispatching

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 4519  Solved: 2329
[Submit][Status][Discuss]

Description

在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿。在这个帮派里,有一名忍者被称之为 Master。除了 Master以外,每名忍者都有且仅有一个上级。为保密,同时增强忍者们的领导力,所有与他们工作相关的指令总是由上级发送给他的直接下属,而不允许通过其他的方式发送。现在你要招募一批忍者,并把它们派遣给顾客。你需要为每个被派遣的忍者 支付一定的薪水,同时使得支付的薪水总额不超过你的预算。另外,为了发送指令,你需要选择一名忍者作为管理者,要求这个管理者可以向所有被派遣的忍者 发送指令,在发送指令时,任何忍者(不管是否被派遣)都可以作为消息的传递 人。管理者自己可以被派遣,也可以不被派遣。当然,如果管理者没有被排遣,就不需要支付管理者的薪水。你的目标是在预算内使顾客的满意度最大。这里定义顾客的满意度为派遣的忍者总数乘以管理者的领导力水平,其中每个忍者的领导力水平也是一定的。写一个程序,给定每一个忍者 i的上级 Bi,薪水Ci,领导力L i,以及支付给忍者们的薪水总预算 M,输出在预算内满足上述要求时顾客满意度的最大值。
1  ≤N ≤ 100,000 忍者的个数;
1  ≤M ≤ 1,000,000,000 薪水总预算; 
 
0  ≤Bi < i  忍者的上级的编号;
1  ≤Ci ≤ M                     忍者的薪水;
1  ≤Li ≤ 1,000,000,000             忍者的领导力水平。
 
 

Input

从标准输入读入数据。
 
第一行包含两个整数 N M,其中 N表示忍者的个数,M表示薪水的总预算。
 
接下来 N行描述忍者们的上级、薪水以及领导力。其中的第 i 行包含三个整 Bi , C i , L i分别表示第i个忍者的上级,薪水以及领导力。Master满足B i = 0并且每一个忍者的老板的编号一定小于自己的编号 Bi < i
 

Output

输出一个数,表示在预算内顾客的满意度的最大值。
 
 

Sample Input

5 4
0 3 3
1 3 5
2 2 2
1 2 4
2 3 1

Sample Output

6

HINT

如果我们选择编号为 1的忍者作为管理者并且派遣第三个和第四个忍者,薪水总和为 4,没有超过总预算                         4。因为派遣了                              2   个忍者并且管理者的领导力为      3,

用户的满意度为 2      ,是可以得到的用户满意度的最大值。

Source

代码:

//对于每一个子树显然是选花费小的节点合算,维护一个大根堆,并且当堆的花费和大于m时删掉堆根。
//斜堆。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
const int MAXN=;
int n,m,tot,cnt,head[MAXN],C[MAXN],L[MAXN],node[MAXN][],root[MAXN],key[MAXN];
ll sum[MAXN],size[MAXN],ans;
struct Edge { int to,next; }edge[MAXN<<];
void init()
{
tot=cnt=;
ans=;
memset(head,-,sizeof(head));
memset(node,,sizeof(node));
}
void addedge(int x,int y)
{
edge[tot].to=y;edge[tot].next=head[x];
head[x]=tot++;
}
int mmeg(int x,int y)
{
if(x==) return y;
if(y==) return x;
if(key[x]<key[y]) swap(x,y);
node[x][]=mmeg(node[x][],y);
swap(node[x][],node[x][]);
return x;
}
int ttop(int x) { return key[x]; }
int ppop(int x) { return mmeg(node[x][],node[x][]); }
void dfs(int x)
{
root[x]=++cnt;
size[x]=;
key[cnt]=sum[x]=C[x];
for(int i=head[x];i!=-;i=edge[i].next){
int y=edge[i].to;
dfs(y);
size[x]+=size[y];
sum[x]+=sum[y];
root[x]=mmeg(root[x],root[y]);
}
while(sum[x]>m){
sum[x]-=ttop(root[x]);
root[x]=ppop(root[x]);
size[x]--;
}
ans=max(ans,size[x]*L[x]);
}
int main()
{
init();
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++){
int x;
scanf("%d%d%d",&x,&C[i],&L[i]);
addedge(x,i);
}
dfs();
printf("%lld\n",ans);
return ;
}
//左偏树。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
const int MAXN=;
int n,m,tot,cnt,head[MAXN],node[MAXN][],key[MAXN],root[MAXN],d[MAXN],C[MAXN],L[MAXN];
ll size[MAXN],sum[MAXN],ans;
struct Edge { int to,next; }edge[MAXN<<];
void init()
{
tot=cnt=;
ans=;
memset(head,-,sizeof(head));
memset(node,,sizeof(node));
memset(d,-,sizeof(d));
}
void addedge(int x,int y)
{
edge[tot].to=y;edge[tot].next=head[x];
head[x]=tot++;
}
int mmeg(int x,int y)
{
if(x==) return y;
if(y==) return x;
if(key[x]<key[y]) swap(x,y);
node[x][]=mmeg(node[x][],y);
if(d[node[x][]]>d[node[x][]]) swap(node[x][],node[x][]);
d[x]=d[node[x][]]+;
return x;
}
int ttop(int x) { return key[x]; }
int ppop(int x) { return mmeg(node[x][],node[x][]); }
void dfs(int x)
{
size[x]=;
root[x]=++cnt;
d[cnt]=;
sum[x]=key[cnt]=C[x];
for(int i=head[x];i!=-;i=edge[i].next){
int y=edge[i].to;
dfs(y);
size[x]+=size[y];
sum[x]+=sum[y];
root[x]=mmeg(root[x],root[y]);
}
while(sum[x]>m){
sum[x]-=ttop(root[x]);
root[x]=ppop(root[x]);
size[x]--;
}
ans=max(ans,size[x]*L[x]);
}
int main()
{
init();
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++){
int x;
scanf("%d%d%d",&x,&C[i],&L[i]);
addedge(x,i);
}
dfs();
printf("%lld\n",ans);
return ;
}

bzoj 2809的更多相关文章

  1. BZOJ 2809: [Apio2012]dispatching( 平衡树 + 启发式合并 )

    枚举树上的每个结点做管理者, 贪心地取其子树中薪水较低的, 算出这个结点为管理者的满意度, 更新答案. 用平衡树+启发式合并, 时间复杂度为O(N log²N) ------------------- ...

  2. BZOJ 2809 APIO2012 dispatching Treap+启示式合并 / 可并堆

    题目大意:给定一棵树,选定一棵子树中的一些点,薪水和不能超过m,求点的数量*子树根节点的领导能力的最大值 考虑对于每一个节点,我们维护一种数据结构,在当中贪心寻找薪金小的雇佣. 每一个节点暴力重建一定 ...

  3. BZOJ 2809: [Apio2012]dispatching(左偏树)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2809 题意: 思路:最简单的想法就是枚举管理者,在其子树中从薪水低的开始选起,但是每个节点都这样处理 ...

  4. bzoj 2809 可并堆维护子树信息

    对于每个节点,要在其子树中选尽量多的节点,并且节点的权值和小于一个定值. 建立大根堆,每个节点从儿子节点合并,并弹出最大值直到和满足要求. /***************************** ...

  5. bzoj 2809: [Apio2012]dispatching -- 可并堆

    2809: [Apio2012]dispatching Time Limit: 10 Sec  Memory Limit: 128 MB Description 在一个忍者的帮派里,一些忍者们被选中派 ...

  6. bzoj 2809 左偏树\平衡树启发式合并

    首先我们对于一颗树,要选取最多的节点使得代价和不超过m,那么我们可以对于每一个节点维护一个平衡树,平衡树维护代价以及代价的和,那么我们可以在logn的时间内求出这个子树最多选取的节点数,然后对于一个节 ...

  7. 【BZOJ 2809】2809: [Apio2012]dispatching (左偏树)

    2809: [Apio2012]dispatching Description 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Maste ...

  8. BZOJ 2809 [Apio2012]dispatching(斜堆+树形DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2809 [题目大意] 给出一棵树,求出每个点有个权值,和一个乘算值,请选取一棵子树, 并 ...

  9. [BZOJ 2809] Dispatching

    Link:https://www.lydsy.com/JudgeOnline/problem.php?id=2809 Algorithm: 很容易看出此题贪心的思路: 只要在每个点的子树中贪心选取费用 ...

随机推荐

  1. iframe子页面position的fixed

    前言: 首先说一说我昨天天的苦逼经历.中午吃饭时一同事跟我说,他做的项目嵌套iframe后,子页面的position设置fixed失效了. 经过反复询问,得知他用了两层iframe,再加上最外的父页面 ...

  2. How to submit a package to PyPI

    How to submit a package to PyPI The other month a coworker of mine wanted to distribute a small wrap ...

  3. 将本地开发完的SDK代码上传到SVN上面:an error occurred while contacting the repository The server may be unreachable or the URL may be incorrect

    将本地开发完的SDK代码上传到SVN上面:an error occurred while contacting the repository  The server may be unreachabl ...

  4. PC端上必应词典与金山词霸的测评分析

    1.  介绍 随着英语学习越来越普及,基本上现在每位大学生的电脑上都会有一款便捷的英语查词软件,这次我们团队选择测评的 是微软必应词典(3.5.0.4311)和金山词霸(2014.05.16.044) ...

  5. Notes of Scrum Meeting(2014/11/2)

    Notes of Scrum Meeting (2014/11/2) 软件工程项目组Sevens开始项目之后的第一次Scrum Meeting报告 会议时间:2014年11月2日  20:00—20: ...

  6. 网络助手之NABCD

    Sunny--Code团队:刘中睿,杜晓松,郑成       我们小组这次做的软件名字叫为校园网络助手.它主要有着两项功能:网络助手与校内网盘.          N--need:在学校里有时候我们就 ...

  7. 解决Cygwin编译cocos2dx 遇到的 error: 'UINT64_C' was not declared in this scope 问题

    环境工具:Win10.VS2013.cocos2d-x-2.2.6.Cygwin.ADT 问题来源:写了一个小游戏,VS2013上运行成功,就尝试着打包apk,项目导入到ADT里面,添加了cocos2 ...

  8. max值——单元测试

    设计思想 在调试的时候,尽可能的将所有可能出现的情况都考虑到,输入这些情况,查看程序运行的结果 源代码 #include<iostream> using namespace std; in ...

  9. AVL树/线索二叉树

    此文转载: http://www.cnblogs.com/skywang12345/p/3577360.html AVL树是一棵特殊的高度平衡的二叉树,每个节点的两棵子树高度最大差为1.所以在每次的删 ...

  10. KEIL C51代码优化详细分析

    阅读了<单片机与嵌入式系统应用>2005年第10期杂志<经验交流>栏目的一篇文章<Keil C51对同一端口的连续读取方法>(原文)后,笔者认为该文并未就此问题进行 ...