【POJ】1840:Eqs【哈希表】
| Time Limit: 5000MS | Memory Limit: 65536K | |
| Total Submissions: 18299 | Accepted: 8933 |
Description
a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0
The coefficients are given integers from the interval [-50,50].
It is consider a solution a system (x1, x2, x3, x4, x5) that verifies the equation, xi∈[-50,50], xi != 0, any i∈{1,2,3,4,5}.
Determine how many solutions satisfy the given equation.
Input
Output
Sample Input
37 29 41 43 47
Sample Output
654
Source
Solution
一开始以为是meet in the middle搜索.....
然而完全没有那么复杂,甚至还可以用暴力map过??
学习了一波hash表!
其实和建边的邻接表很像,就是把某些值系在某个特定的节点上,一般是定一个不大不小的模数来确定位置。
当然可能有重复,不过这就是hash表嘛!接在一起,查询就很接近$O(1)$了。
主要程序:
加入
void add(int v) {
int x = v > 0 ? v : -v;
x = (x % mod + x / mod) % mod;
Edge[++stot] = Node(v, h[x]);
h[x] = stot;
}
查询
int find(int v) {
int ans = 0;
int x = v > 0 ? v : -v;
x = (x % mod + x / mod) % mod;
for(int i = h[x]; i; i = Edge[i].nex)
if(Edge[i].v == v) ans ++;
return ans;
}
很像邻接表吧~
mod是自己定的,这里定的100007,加入或查询都是按固定的mod方案就能固定位置了
#include<iostream>
#include<cstdio>
#define mod 1000007
using namespace std; struct Node {
int v, nex;
Node() { }
Node(int v, int nex) :
v(v), nex(nex) { }
} Edge[]; int stot, h[];
void add(int v) {
int x = v > ? v : -v;
x = (x % mod + x / mod) % mod;
Edge[++stot] = Node(v, h[x]);
h[x] = stot;
} int find(int v) {
int ans = ;
int x = v > ? v : -v;
x = (x % mod + x / mod) % mod;
for(int i = h[x]; i; i = Edge[i].nex)
if(Edge[i].v == v) ans ++;
return ans;
} int main() {
int a1, a2, a3, a4, a5;
scanf("%d%d%d%d%d", &a1, &a2, &a3, &a4, &a5);
for(int x1 = -; x1 <= ; x1 ++) if(x1)
for(int x2 = -; x2 <= ; x2 ++) if(x2) {
int s = x1 * x1 * x1 * a1 + x2 * x2 * x2 * a2;
add(s);
}
int ans = ;
for(int x3 = -; x3 <= ; x3 ++) if(x3)
for(int x4 = -; x4 <= ; x4 ++) if(x4)
for(int x5 = -; x5 <= ; x5 ++) if(x5) {
int s = x3 * x3 * x3 * a3 + x4 * x4 * x4 * a4 + x5 * x5 * x5 * a5;
ans += find(s);
}
printf("%d", ans);
return ;
}
【POJ】1840:Eqs【哈希表】的更多相关文章
- poj 1840 Eqs 【解五元方程+分治+枚举打表+二分查找所有key 】
Eqs Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 13955 Accepted: 6851 Description ...
- POJ 1840 Eqs 解方程式, 水题 难度:0
题目 http://poj.org/problem?id=1840 题意 给 与数组a[5],其中-50<=a[i]<=50,0<=i<5,求有多少组不同的x[5],使得a[0 ...
- poj 1840 Eqs (hash)
题目:http://poj.org/problem?id=1840 题解:http://blog.csdn.net/lyy289065406/article/details/6647387 小优姐讲的 ...
- POJ 1840 Eqs
Eqs Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 15010 Accepted: 7366 Description ...
- POJ 1840 Eqs 二分+map/hash
Description Consider equations having the following form: a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 The co ...
- POJ 1840 Eqs(hash)
题意 输入a1,a2,a3,a4,a5 求有多少种不同的x1,x2,x3,x4,x5序列使得等式成立 a,x取值在-50到50之间 直接暴力的话肯定会超时的 100的五次方 10e了都 ...
- POJ 1840 Eqs 暴力
Description Consider equations having the following form: a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 The ...
- POJ 1840 Eqs(乱搞)题解
思路:这题好像以前有类似的讲过,我们把等式移一下,变成 -(a1*x1^3 + a2*x2^3)== a3*x3^3 + a4*x4^3 + a5*x5^3,那么我们只要先预处理求出左边的答案,然后再 ...
- POJ 2785 4 Values whose Sum is 0(哈希表)
[题目链接] http://poj.org/problem?id=2785 [题目大意] 给出四个数组,从每个数组中选出一个数,使得四个数相加为0,求方案数 [题解] 将a+b存入哈希表,反查-c-d ...
- POJ 3349 Snowflake Snow Snowflakes (哈希表)
题意:每片雪花有六瓣,给出n片雪花,六瓣花瓣的长度按顺时针或逆时针给出,判断其中有没有相同的雪花(六瓣花瓣的长度相同) 思路:如果直接遍历会超时,我试过.这里要用哈希表,哈希表的关键码key用六瓣花瓣 ...
随机推荐
- Count 1 in Binary
Count how many 1 in binary representation of a 32-bit integer. Example Given 32, return 1 Given 5, r ...
- Android 抽屉导航
原文地址 http://developer.android.com/training/implementing-navigation/nav-drawer.html 创建抽屉导航 导航抽屉是在 屏幕左 ...
- JavaBean的实用工具Lombok(省去get、set等方法)
转:https://blog.csdn.net/ghsau/article/details/52334762 背景 我们在开发过程中,通常都会定义大量的JavaBean,然后通过IDE去生成其属性 ...
- 试用Redis
Windows 10家庭中文版,运行于VirtualBox上的Ubuntu 18.04,Redis 4.0.10, Redis,久仰大名!因为没有从事互联网行业,所以一直没有使用过.近期找工作,也隐约 ...
- spring boot jpa 多数据源配置
在实际项目中往往会使用2个数据源,这个时候就需要做额外的配置了.下面的配置在2.0.1.RELEASE 测试通过 1.配置文件 配置两个数据源 spring.datasource.url=jdbc:m ...
- 【Android开发日记】之入门篇(十二)——Android组件间的数据传输
组件我们有了,那么我们缺少一个组件之间传递信息的渠道.利用Intent做载体,这是一个王道的做法.还有呢,可以利用文件系统来做数据共享.也可以使用Application设置全局数据,利用组件来进行控制 ...
- fsevents npm install是报错
npm install 安装插件的时候,fsevents报错,这是node 8.x版本的问题,解决办法,把node 版本切换到6.x
- 2017-2018-2 20165301 实验四《Java面向对象程序设计》实验报告
2017-2018-2 20165301 实验四<Java面向对象程序设计>实验报告 一.Android Stuidio的安装测试 实验要求: 参考<Java和Android开发学习 ...
- (一) solr的安装与配置
载solr文件压缩包,并解压 ,要运行solr服务之前需要先安装jdk,具体安装过程可以参看下面这篇文章: http://www.cnblogs.com/xiazh/archive/2012/05/2 ...
- MST最小生成树
首先,贴上一个很好的讲解贴: http://www.wutianqi.com/?p=3012 HDOJ 1233 还是畅通工程 http://acm.hdu.edu.cn/showproblem.ph ...