https://www.cnblogs.com/zwfymqz/p/9332753.html

由于欧拉函数是积性函数,可以用乘法分配律变成对每个质因子分开算最后乘起来。再由欧拉函数公式和分配律发现就是等比数列求和问题,特判下1的问题就好了。

 #include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
typedef long long ll;
using namespace std; const int mod=1e9+;
int n,x,cnt,tot,ans=,sm[],p[],b[];
struct P{ int x,y; }a[];
bool cmp(const P &a,const P &b){ return a.x<b.x || (a.x==b.x && a.y<b.y); } int ksm(int a,int b){
int res=;
for (; b; a=1ll*a*a%mod,b>>=)
if (b & ) res=1ll*res*a%mod;
return res;
} void Fac(int x){
for (int i=; p[i]*p[i]<=x; i++)
if (x%p[i]==){
int s=;
while (x%p[i]==) x/=p[i],s++;
a[++cnt]=(P){p[i],s};
}
if (x>) a[++cnt]=(P){x,};
} void init(int n){
rep(i,,n){
if (!b[i]) p[++tot]=i;
for (int j=; j<=tot && i*p[j]<=n; j++){
b[i*p[j]]=;
if (i%p[j]==) break;
}
}
} int main(){
freopen("bzoj3560.in","r",stdin);
freopen("bzoj3560.out","w",stdout);
scanf("%d",&n); init();
rep(i,,n) scanf("%d",&x),Fac(x);
sort(a+,a+cnt+,cmp);
for (int i=,j; i<=cnt; i=j+){
for (j=i; j<cnt && a[j+].x==a[j].x; j++);
sm[]=; int tmp=;
rep(k,,a[j].y) sm[k]=1ll*sm[k-]*a[i].x%mod;
rep(k,,a[j].y) sm[k]=(sm[k-]+sm[k])%mod;
rep(k,i,j) tmp=1ll*tmp*sm[a[k].y]%mod;
tmp=1ll*(tmp-)*(a[i].x-)%mod*ksm(a[i].x,mod-)%mod+;
ans=1ll*ans*tmp%mod;
}
printf("%d\n",ans);
return ;
}

[BZOJ3560]DZY Loves Math V(欧拉函数)的更多相关文章

  1. 【bzoj3560】DZY Loves Math V 欧拉函数

    题目描述 给定n个正整数a1,a2,…,an,求 的值(答案模10^9+7). 输入 第一行一个正整数n. 接下来n行,每行一个正整数,分别为a1,a2,…,an. 输出 仅一行答案. 样例输入 3 ...

  2. BZOJ3560 : DZY Loves Math V

    因为欧拉函数是非完全积性函数,所以可以考虑对每个数进行分解质因数,将每个质数的解乘起来即可. 对于一个质数$p$,设它在各个数中分别出现了$b_1,b_2,...b_n$次,那么由生成函数和欧拉函数的 ...

  3. BZOJ3560 DZY Loves Math V(欧拉函数)

    对每个质因子分开计算再乘起来.使用类似生成函数的做法就很容易统计了. #include<iostream> #include<cstdio> #include<cmath ...

  4. BZOJ3560 DZY Loves Math V 数论 快速幂

    原文链接http://www.cnblogs.com/zhouzhendong/p/8111725.html UPD(2018-03-26):蒟蒻回来重新学数论了.更新了题解和代码.之前的怼到后面去了 ...

  5. 【BZOJ 3560】 3560: DZY Loves Math V (欧拉函数)

    3560: DZY Loves Math V Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 241  Solved: 133 Description ...

  6. 【BZOJ3960】DZY Loves Math V(数论)

    题目: BZOJ3560 分析: orz跳瓜. 欧拉函数的公式: \[\phi(n)=n(\prod \frac{p_i-1}{p_i})\] 其中 \(p_i\) 取遍 \(n\) 的所有质因子. ...

  7. [BZOJ4026]dC Loves Number Theory 欧拉函数+线段树

    链接 题意:给定长度为 \(n\) 的序列 A,每次求区间 \([l,r]\) 的乘积的欧拉函数 题解 考虑离线怎么搞,将询问按右端点排序,然后按顺序扫这个序列 对于每个 \(A_i\) ,枚举它的质 ...

  8. bzoj 3560 DZY Loves Math V - 线性筛 - 扩展欧几里得算法

    给定n个正整数a1,a2,…,an,求 的值(答案模10^9+7). Input 第一行一个正整数n. 接下来n行,每行一个正整数,分别为a1,a2,…,an. Output 仅一行答案. Sampl ...

  9. bzoj DZY Loves Math V

    Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 509  Solved: 284[Submit][Status][Discuss] Descriptio ...

随机推荐

  1. Oracle新建数据库,并导入dmp文件

    1:安装Oracle及新建数据库 Oracle 11g安装图解 http://www.cnblogs.com/qianyaoyuan/archive/2013/05/05/3060471.html h ...

  2. 最长上升子序列O(nlogn) 要强的T^T(2358)

    题目来源:http://www.fjutacm.com/Problem.jsp?pid=2358 要强的T^T TimeLimit:1000MS  MemoryLimit:65536K 64-bit ...

  3. 配置虚拟机时间使其与国内时间同步,linux时间 ntp

    设置系统时间 [root@node2 ~]# date -s "10/30/18 09:30:00"Tue Oct 30 09:30:00 PDT 2018[root@node2 ...

  4. 串口流控制详解(CTS/RTS,DTR/DSR)

    1 首先看下关于流控相关的几个端口的解释如下图 除了必要的地(GND)要连接外,其它连如下 步骤阅读 2 计算机和猫(MODEM)的连接 步骤阅读 步骤阅读 3 计算机和非猫的连接(null  mod ...

  5. Memcache 内存分配策略和性能(使用)状态检查【转】

    前言: 一直在使用Memcache,但是对其内部的问题,如它内存是怎么样被使用的,使用一段时间后想看看一些状态怎么样?一直都不清楚,查了又忘记,现在整理出该篇文章,方便自己查阅.本文不涉及安装.操作. ...

  6. CAS和AQS

    一.CAS CAS(Compare And Swap),即比较并交换.是解决多线程并行情况下使用锁造成性能损耗的一种机制,CAS操作包含三个操作数——内存位置(V).预期原值(A)和新值(B).如果内 ...

  7. 02 Go 1.2 Release Notes

    Go 1.2 Release Notes Introduction to Go 1.2 Changes to the language Use of nil Three-index slices Ch ...

  8. 从Runoob的Django教程学到的

    Windows 10家庭中文版,Python 3.6.4,Django 2.0.3 这个月开始学习Django,从网上找到了RUNOOB.COM网站找到了一份Django教程,在“认真”学习之后,初步 ...

  9. 数据库-mysql安装

    MySQL 安装 所有平台的Mysql下载地址为: MySQL 下载. 挑选你需要的 MySQL Community Server 版本及对应的平台. Linux/UNIX上安装Mysql Linux ...

  10. linux文件处理

    取中间的行数作为train.txt sed -n '1000000,170910580p' train.txt > trainv1.txt 取前面的行数作为dev.txt head -10000 ...