P4562 [JXOI2018]游戏
题面
题目描述
她长大以后创业了,开了一个公司。 但是管理公司是一个很累人的活,员工们经常背着可怜偷懒,可怜需要时不时对办公室进行检查。
可怜公司有 \(n\) 个办公室,办公室编号是 \(l\) 到 \(l+n-1\) ,可怜会事先制定一个顺序,按照这个顺序依次检查办公室。一开始的时候,所有办公室的员工都在偷懒,当她检查完编号是 \(i\) 的办公室时候,这个办公室的员工会认真工作,并且这个办公室的员工通知所有办公室编号是 \(i\) 的倍数的办公室,通知他们老板来了,让他们认真工作。因此,可怜检查完第 \(i\) 个办公室的时候,所有编号是 \(i\) 的倍数(包括 \(i\) )的办公室的员工会认真工作。
可怜发现了员工们通风报信的行为,她发现,对于每种不同的顺序 \(p\) ,都存在一个最小的 \(t(p)\) ,使得可怜按照这个顺序检查完前 \(t(p)\) 个办公室之后,所有的办公室都会开始认真工作。她把这个 \(t(p)\) 定义为 \(p\) 的检查时间。
可怜想知道所有 \(t(p)\) 的和。
但是这个结果可能很大,她想知道和对 \(10^9+7\) 取模后的结果。
输入格式:
第一行输入两个整数 \(l\) , \(r\) 表示编号范围,题目中的 \(n\) 就是 \(r-l+1\) 。
输出格式:
一个整数,表示期望进行的轮数。
输入输出样例
输入样例#1:
2 4
输出样例#1:
16
\(\text{Solution:}\)
考虑到一个数能对答案有贡献,那么它一定不是其它数的倍数,假设这样的数有sum个。
对于九条可怜任意选择的排列,那么答案就是排列中最靠后的不能被其它数表示出来的数的位置。
所以我们可以枚举最靠后的那个数的位置 \(i\) ,\(i\) 位置可以选择 \(sum\) 个数中的任何一个数,而对于 \(i\) 后面的数它们是从 \(n-sum\) 个数中选出的 \(n-i\) 个数,而且可以随意排列,\(i\) 之前的数也可以随意排列,所以我们就有了一个用一堆乘法原理推出来的式子:
Ans=\sum_{i=sum}^{n}i \times sum \times C_{n-sum}^{n-i} \times (n-i)! \times (i-1)!
\end{aligned}
\]
#include <set>
#include <cmath>
#include <cctype>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <assert.h>
#include <algorithm>
using namespace std;
#define fir first
#define sec second
#define pb push_back
#define mp make_pair
#define LL long long
#define INF (0x3f3f3f3f)
#define mem(a, b) memset(a, b, sizeof (a))
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define Debug(x) cout << #x << " = " << x << endl
#define travle(i, x) for (register int i = head[x]; i; i = nxt[i])
#define For(i, a, b) for (register int (i) = (a); (i) <= (b); ++ (i))
#define Forr(i, a, b) for (register int (i) = (a); (i) >= (b); -- (i))
#define file(s) freopen(s".in", "r", stdin), freopen(s".out", "w", stdout)
#define ____ debug("go\n")
namespace io {
static char buf[1<<21], *pos = buf, *end = buf;
inline char getc()
{ return pos == end && (end = (pos = buf) + fread(buf, 1, 1<<21, stdin), pos == end) ? EOF : *pos ++; }
inline int rint() {
register int x = 0, f = 1;register char c;
while (!isdigit(c = getc())) if (c == '-') f = -1;
while (x = (x << 1) + (x << 3) + (c ^ 48), isdigit(c = getc()));
return x * f;
}
inline LL rLL() {
register LL x = 0, f = 1; register char c;
while (!isdigit(c = getc())) if (c == '-') f = -1;
while (x = (x << 1ll) + (x << 3ll) + (c ^ 48), isdigit(c = getc()));
return x * f;
}
inline void rstr(char *str) {
while (isspace(*str = getc()));
while (!isspace(*++str = getc()))
if (*str == EOF) break;
*str = '\0';
}
template<typename T>
inline bool chkmin(T &x, T y) { return x > y ? (x = y, 1) : 0; }
template<typename T>
inline bool chkmax(T &x, T y) { return x < y ? (x = y, 1) : 0; }
}
using namespace io;
const int N = 1e7 + 10, P = 1e9 + 7;
int fac[N], ifac[N];
int qpow(int a, int b)
{
int res = 1;
while (b)
{
if (b & 1) res = 1ll * a * res % P;
a = 1ll * a * a % P;
b >>= 1;
}
return res;
}
void init(int n)
{
fac[0] = 1;
for (int i = 1; i <= n; ++ i)
fac[i] = 1ll * fac[i - 1] * i % P;
ifac[n] = qpow(fac[n], P - 2);
for (int i = n - 1; i >= 0; -- i)
ifac[i] = 1ll * ifac[i + 1] * (i + 1) % P;
}
int C(int n, int m)
{
if (n < m) return 0;
return 1ll * fac[n] % P * 1ll * ifac[m] % P * 1ll * ifac[n - m] % P;
}
bool vis[N];
int main() {
#ifndef ONLINE_JUDGE
file("P4562");
#endif
int n, L, R, sum = 0;
cin >> L >> R;
n = R - L + 1;
init(R);
for (int i = L; i <= R; ++ i)
{
if (!vis[i]) sum++;
for (int j = i + i; j <= R; j += i)
vis[j] = true;
}
int ans = 0;
for (int i = sum; i <= n; ++ i)
ans = (ans + 1ll * i * fac[i - 1] % P * sum % P * C(n - sum, n - i) % P * fac[n - i] % P) % P;
cout << ans << endl;
}
P4562 [JXOI2018]游戏的更多相关文章
- luogu P4562 [JXOI2018]游戏 组合数学
LINK:游戏 当L==1的时候 容易想到 答案和1的位置有关. 枚举1的位置 那么剩下的方案为(R-1)! 那么总答案为 (R+1)*R/2(R-1)! 考虑L==2的时候 对于一个排列什么时候会终 ...
- 洛谷P4562 [JXOI2018]游戏(组合数学)
题意 题目链接 Sol 这个题就比较休闲了. \(t(p)\)显然等于最后一个没有约数的数的位置,那么我们可以去枚举一下. 设没有约数的数的个数有\(cnt\)个 因此总的方案为\(\sum_{i=c ...
- 洛谷P4562 [JXOI2018]游戏 数论
正解:数论 解题报告: 传送门! 首先考虑怎么样的数可能出现在t(i)那个位置上?显然是[l,r]中所有无法被表示出来的数(就约数不在[l,r]内的数嘛QwQ 所以可以先把这些数筛出来 具体怎么筛的话 ...
- Luogu P4562 [JXOI2018]游戏
题目 我们用埃氏筛从\(l,r\)筛一遍,每次把没有被筛掉的数的倍数筛掉. 易知最后剩下来的数(这个集合记为\(S\))的个数就是我们需要选的数,设有\(s\)个,令\(n=r-l+1\). 记\(f ...
- 【BZOJ5323】[JXOI2018]游戏(组合计数,线性筛)
[BZOJ5323][JXOI2018]游戏(组合计数,线性筛) 题面 BZOJ 洛谷 题解 显然要考虑的位置只有那些在\([l,r]\)中不存在任意一个约数的数. 假设这样的数有\(x\)个,那么剩 ...
- [JXOI2018]游戏 (线性筛,数论)
[JXOI2018]游戏 \(solution:\) 这一道题的原版题面实在太负能量了,所以用了修改版题面. 这道题只要仔细读题,我们就可以将题目的一些基本性质分析出来:首先我们定义:对于某一类都可以 ...
- 【题解】JXOI2018游戏(组合数)
[题解]JXOI2018游戏(组合数) 题目大意 对于\([l,r]\)中的数,你有一种操作,就是删除一个数及其所有倍数.问你删除所有数的所有方案的步数之和. 由于这里是简化题意,有一个东西没有提到: ...
- BZOJ5323 & 洛谷4562:[JXOI2018]游戏——题解
https://www.luogu.org/problemnew/show/P4562 https://www.lydsy.com/JudgeOnline/problem.php?id=5323 (B ...
- [JXOI2018]游戏
嘟嘟嘟 九条可怜竟然有这种良心题,似乎稍稍刷新了我对九条可怜的认识. 首先假设我们求出了所有必须要筛出来的数m,那么\(t(p)\)就只受最后一个数的位置影响. 所以我们枚举最后一个数的位置,然后用组 ...
随机推荐
- 10、Android--技巧
10.1.全局获取Context的技巧 在实践中有很多的地方都可以使用到Context 弹出Toast的时候需要,启动活动的时候需要.发送广播的时候需要. 操作数据库的时候需要.使用通知的时候需要.. ...
- oracle数据库之操作总结
## 连接数据库: sqlplus test/test##@localhost:/ORCL ## 查询数据库所有的表: select table_name from user_tables; ## 查 ...
- 统计Azure存储的HBase各表数据量
场景:HBase存储在Azure上,现在通过访问Azure Storage的接口,获取HBase中各个表的数据量. 注意: 1.Azure存储,默认的副本数为2,即共存3份,但只收1份的费用,取到的s ...
- 初识Qt涂鸦板绘制
1.新建一个Qt Gui应用,项目名称为myPalette,基类选择为QMainWindow,类名设置为MainWindow. 2.在mainwindow.h头文件中添加以下代码,同时添加#inclu ...
- web常用的正则表达式
1. 平时做网站经常要用正则表达式,下面是一些讲解和例子,仅供大家参考和修改使用: 2. "^\d+$" //非负整数(正整数 + 0) 3. "^[0 ...
- 正则匹配与替换 regexp & regsub
正则匹配是使用正则表达式匹配字符串的一种方法:在脚本编写过程中,经常需要处理一些文本,而这些文本中可能只有部分信息是有用的,我们需要从文本中提取出这些有用信息:这时候,就需要编写特定格式的正则表达式, ...
- SQLSERVER 数据类型int、bigint、smallint 和 tinyint范围
[bigint] 从 -2^63 (-9223372036854775808) 到 2^63-1 (9223372036854775807) 的整型数据(所有数字).存储大小为 8 个字节. [int ...
- sqli-labs学习(less-1-less-4)
学习sqli-labs之前先介绍一些函数,以便于下面的payload看的懂 group_concat函数 将查询出来的多个结果连接成一个字符串结果,用于在一个回显显示多个结果 同理的还有 concat ...
- 20155211课下测试ch10补交
20155211课下测试ch10补交 1.假设下面代码中的foobar.txt中有6个ASCII字母,程序的输出是() A.c = f B.c = o C.c = b D.c = 随机数 答案:A 解 ...
- comet 推送消息到客户端
weiconfig: <system.web> <httpHandlers> <add path="comet_broadcast.ashx" typ ...