(最小生成树 Prim) Highways --POJ --1751
链接:
http://poj.org/problem?id=1751
| Time Limit: 1000MS | Memory Limit: 10000K | |||
| Total Submissions: 11507 | Accepted: 3279 | Special Judge | ||
Description
Flatopian towns are numbered from 1 to N and town i has a position given by the Cartesian coordinates (xi, yi). Each highway connects exaclty two towns. All highways (both the original ones and the ones that are to be built) follow straight lines, and thus their length is equal to Cartesian distance between towns. All highways can be used in both directions. Highways can freely cross each other, but a driver can only switch between highways at a town that is located at the end of both highways.
The Flatopian government wants to minimize the cost of building new highways. However, they want to guarantee that every town is highway-reachable from every other town. Since Flatopia is so flat, the cost of a highway is always proportional to its length. Thus, the least expensive highway system will be the one that minimizes the total highways length.
Input
The first line of the input file contains a single integer N (1 <= N <= 750), representing the number of towns. The next N lines each contain two integers, xi and yi separated by a space. These values give the coordinates of ith town (for i from 1 to N). Coordinates will have an absolute value no greater than 10000. Every town has a unique location.
The next line contains a single integer M (0 <= M <= 1000), representing the number of existing highways. The next M lines each contain a pair of integers separated by a space. These two integers give a pair of town numbers which are already connected by a highway. Each pair of towns is connected by at most one highway.
Output
If no new highways need to be built (all towns are already connected), then the output file should be created but it should be empty.
Sample Input
9
1 5
0 0
3 2
4 5
5 1
0 4
5 2
1 2
5 3
3
1 3
9 7
1 2
Sample Output
1 6
3 7
4 9
5 7
8 3
代码:
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
#define N 800
#define INF 0xffffff struct node {int x, y;}a[N]; int n, m, pre[N];
bool used[N][N], vis[N];
double G[N][N], dist[N]; void prim()
{
int i, j;
for(i=; i<=n; i++)
{
dist[i] = G[][i];
pre[i] = ;
} vis[] = ; for(i=; i<n; i++)
{
int Index = ;
double Min = INF;
for(j=; j<=n; j++)
{
if(!vis[j] && Min>dist[j])
{
Min = dist[j];
Index = j;
}
} vis[Index] = ; for(j=; j<=n; j++)
{
if(!vis[j] && dist[j] > G[Index][j])
{
dist[j] = G[Index][j];
pre[j] = Index;
}
}
}
} int main()
{
while(scanf("%d", &n)!=EOF)
{
int i, j, u, v; for(i=; i<=n; i++)
scanf("%d%d", &a[i].x, &a[i].y); for(i=; i<=n; i++)
for(j=; j<=i; j++)
G[i][j] = G[j][i] = sqrt(1.0*(a[i].x-a[j].x)*(a[i].x-a[j].x) + (a[i].y-a[j].y)*(a[i].y-a[j].y)); scanf("%d", &m);
memset(used, , sizeof(used));
for(i=; i<=m; i++)
{
scanf("%d%d", &u, &v);
G[u][v] = G[v][u] = ;
used[u][v] = used[v][u] = ;
} memset(vis, , sizeof(vis));
prim(); for(i=; i<=n; i++)
{
if(!used[pre[i]][i] && !used[i][pre[i]])
printf("%d %d\n", i, pre[i]);
}
}
return ;
}
(最小生成树 Prim) Highways --POJ --1751的更多相关文章
- H - Highways - poj 1751(prim)
某个地方政府想修建一些高速公路使他们每个乡镇都可以相同通达,不过以前已经修建过一些公路,现在要实现所有的联通,所花费的最小代价是多少?(也就是最小的修建长度),输出的是需要修的路,不过如果不需要修建就 ...
- Highways POJ - 1751
题目链接:https://vjudge.net/problem/POJ-1751 思路: 最小生成树板子,只需要多记录每个dis[x]的权值是从哪个点到x这个点的. #include <stdi ...
- POJ 1751 Highways (最小生成树)
Highways Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%I64d & %I64u Submit Sta ...
- Highways POJ-1751 最小生成树 Prim算法
Highways POJ-1751 最小生成树 Prim算法 题意 有一个N个城市M条路的无向图,给你N个城市的坐标,然后现在该无向图已经有M条边了,问你还需要添加总长为多少的边能使得该无向图连通.输 ...
- 数据结构代码整理(线性表,栈,队列,串,二叉树,图的建立和遍历stl,最小生成树prim算法)。。持续更新中。。。
//归并排序递归方法实现 #include <iostream> #include <cstdio> using namespace std; #define maxn 100 ...
- 邻接矩阵c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)
matrix.c #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include < ...
- 最小生成树Prim算法(邻接矩阵和邻接表)
最小生成树,普利姆算法. 简述算法: 先初始化一棵只有一个顶点的树,以这一顶点开始,找到它的最小权值,将这条边上的令一个顶点添加到树中 再从这棵树中的所有顶点中找到一个最小权值(而且权值的另一顶点不属 ...
- 转载:最小生成树-Prim算法和Kruskal算法
本文摘自:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/30/2615542.html 最小生成树-Prim算法和Kruskal算法 Prim算 ...
- 最小生成树Prim
首先解释什么是最小生成树,最小生成树是指在一张图中找出一棵树,任意两点的距离已经是最短的了. 算法要点: 1.用book数组存放访问过的节点. 2.用dis数组保存对应下标的点到树的最近距离,这里要注 ...
随机推荐
- AWK用法整理
printf "1:2::3:::4::::5" | awk -F '[:]+' '{print $4}' [:]+ 表示以1个或多个 :(冒号)作为分隔符 ip addr | ...
- CAD2010安装说明
1. 2. 3. 4. 5. . 提供算号服务(也就是付费才能获得的注册码)... 不会的可以问的撒....
- linux基础命令:
linux基础命令: 显示 echo 输出我写的内容 ls 查看当前目录的文件 pwd 查看当前目录 ifconfig 查看网卡信息 grep 过滤 -v 取反 -n man 查看命令的帮助信息 md ...
- 疯狂JAVA——第五章 面向对象(上)
5.1类和对象 构造器是一个类创建对象的根本途径,如果一个类没有构造器,这个类通常无法创建实例.通过new关键字来调用构造器,从而返回该类的实例. 类名:每个单词首字母大写,其他字母小写,单词之间不要 ...
- Java8Stream
判断一个操作是惰性求值还是及早求值很简单:只需看它的返回值.如果返回值是 Stream,那么是惰性求值.其实可以这么理解,如果调用惰性求值方法,Stream 只是记录下了这个惰性求值方法的过程,并没有 ...
- 团队作业4 Alpha冲刺
第一天 日期:2018/6/13 1.今日完成任务情况以及遇到的问题 许征航:实现了推荐算法的基础逻辑,并按照模块化的思想对算法进行了分步整理. 遇到的问题:现有条件无法实现协同过滤算法,需要简化模型 ...
- RabbitMQ 高可用集群搭建
面向EDA(事件驱动架构)的方式来设计你的消息 AMQP routing key的设计 RabbitMQ cluster搭建 Mirror queue policy设置 两个不错的RabbitMQ p ...
- go语言中make和new的区别
make用于内建类型(map.slice 和channel)的内存分配.new用于各种类型的内存分配. 内建函数new本质上说跟其他语言中的同名函数功能一样:new(T)分配了零值填充的T类型的内存空 ...
- Jmeter响应数据为乱码的处理
jmeter新手,跟着教程,发现响应的数据为乱码,百度到两种方法: 方法一:在相应节点的下方,添加后置处理器-BeanShell PostProcessor 添加一句代码:prev.setDataEn ...
- android笔记 : Content provider内容提供器
内容提供器(Content Provider)主要用于在不同的应用程序之间实现数据共享的功能. 内容提供器的用法一般有两种,一种是使用现有的内容提供器来读取和操作相应程序中的数据,另一种是创建自己的内 ...