tensorflow进阶篇-3
#-*- coding:utf-8 -*-
#Tensorflow的嵌入Layer
import numpy as np
import tensorflow as tf
sess=tf.Session() #创建占位符和数据
my_array=np.array([[1.,3.,5.,7.,9.],
[-2.,0.,2.,4.,6.],
[-6,-3,0.,3.,6.]])
x_vars=np.array([my_array,my_array+1])
x_data=tf.placeholder(tf.float32,shape=(3,5))
#创建矩阵乘法和加法中要用到的常用矩阵
m1=tf.constant([[1.],[0.],[-1.],[2.],[4.]])
m2=tf.constant([[2.]])
a1=tf.constant([[10.]]) #声明操作,表示成计算图
prod1=tf.matmul(x_data,m1)
print sess.run(prod1,feed_dict={x_data:my_array})
print '-'*80
prod2=tf.matmul(prod1,m2)
print sess.run(prod2,feed_dict={x_data:my_array})
print '-'*80
add1=tf.add(prod2,a1)
print sess.run(add1,feed_dict={x_data:my_array})
print '-'*80 #tensorboard --logdir=/path/to/log-directory
#运行上面的代码,可以用tensorboard可视化,最好利用chrome,Firefox好像不怎么支持
for x_var in x_vars:
writer = tf.summary.FileWriter('./graphs', sess.graph)
print sess.run(add1,feed_dict={x_data:x_var})
writer.close()
#-*- coding:utf-8 -*-
#Tensorflow的多层Layer
import numpy as np
import tensorflow as tf
sess=tf.Session() #通过numpy创建2D图像,4x4像素
x_shape=[1,4,4,1]
x_val=np.random.uniform(size=x_shape) #创建占位符
x_data=tf.placeholder(tf.float32,shape=x_shape) #创建滑动窗口
my_filter=tf.constant(0.25,shape=[2,2,1,1])
my_strides=[1,2,2,1]
mov_avg_layer=tf.nn.conv2d(x_data,my_filter,my_strides,padding='SAME',name='Moving_Avg_Window') #自定义Layer,操作滑动窗口平均的2x2的返回值
def custom_layer(input_matrix):
input_matrix_sqeezed=tf.squeeze(input_matrix)
A=tf.constant([[1.,2.],[-1.,3.]])
b=tf.constant(1.,shape=[2,2])
temp1=tf.matmul(A,input_matrix_sqeezed)#
temp=tf.add(temp1,b)# Ax+b
return tf.sigmoid(temp) with tf.name_scope('Custom_Layer') as scope:
custom_layer1=custom_layer(mov_avg_layer) print sess.run(custom_layer1,feed_dict={x_data:x_val})

tensorflow进阶篇-3的更多相关文章
- tensorflow进阶篇-5(反向传播2)
上面是一个简单的回归算法,下面是一个简单的二分值分类算法.从两个正态分布(N(-1,1)和N(3,1))生成100个数.所有从正态分布N(-1,1)生成的数据目标0:从正态分布N(3,1)生成的数据标 ...
- tensorflow进阶篇-5(反向传播1)
这里将讲解tensorflow是如何通过计算图来更新变量和最小化损失函数来反向传播误差的:这步将通过声明优化函数来实现.一旦声明好优化函数,tensorflow将通过它在所有的计算图中解决反向传播的项 ...
- tensorflow进阶篇-4(损失函数2)
Hinge损失函数主要用来评估支持向量机算法,但有时也用来评估神经网络算法.下面的示例中是计算两个目标类(-1,1)之间的损失.下面的代码中,使用目标值1,所以预测值离1越近,损失函数值越小: # U ...
- tensorflow进阶篇-4(损失函数1)
L2正则损失函数(即欧拉损失函数),L2正则损失函数是预测值与目标函数差值的平方和.L2正则损失函数是非常有用的损失函数,因为它在目标值附近有更好的曲度,并且离目标越近收敛越慢: # L = (pre ...
- tensorflow进阶篇-4(损失函数3)
Softmax交叉熵损失函数(Softmax cross-entropy loss)是作用于非归一化的输出结果只针对单个目标分类的计算损失.通过softmax函数将输出结果转化成概率分布,然后计算真值 ...
- Membership三步曲之进阶篇 - 深入剖析Provider Model
Membership 三步曲之进阶篇 - 深入剖析Provider Model 本文的目标是让每一个人都知道Provider Model 是什么,并且能灵活的在自己的项目中使用它. Membershi ...
- idea 插件的使用 进阶篇
CSDN 2016博客之星评选结果公布 [系列直播]零基础学习微信小程序! "我的2016"主题征文活动 博客的神秘功能 idea 插件的使用 进阶篇(个人收集 ...
- 2. web前端开发分享-css,js进阶篇
一,css进阶篇: 等css哪些事儿看了两三遍之后,需要对看过的知识综合应用,这时候需要大量的实践经验, 简单的想法:把qq首页全屏另存为jpg然后通过ps工具切图结合css转换成html,有无从下手 ...
- windows系统快捷操作の进阶篇
上次介绍了windows系统上一些自带的常用快捷键,有些确实很方便,也满足了我们的一部分需求.但是我们追求效率的步伐怎会止步于此?这一次我将会进一步介绍windows上提升效率的方法. 一:运行 打开 ...
随机推荐
- k8s容器挂载配置文件
1.新建ConfigMap apiVersion: v1 kind: ConfigMap metadata: name: test-conf namespace: default labels: na ...
- day05(Object,tostring(),equals(),System,Date,SimpleDateFormat,拆装箱,正则表达式)
Object类, 是所应类的父类: 拥有自己的方法:常用的 红颜色标记的为常用的方法 toString() 用法:打印对象的地址值 getClass() 获取当前类的字节码文件getName() ...
- HDU1269 迷宫城堡 2016-07-24 13:47 84人阅读 评论(0) 收藏
迷宫城堡 Problem Description 为了训练小希的方向感,Gardon建立了一座大城堡,里面有N个房间(N<=10000)和M条通道(M<=100000),每个通道都是单向的 ...
- Eclipse技巧
1 alt + / 提示 2 ctrl + shift + g 查找方法被谁调用 3 ctrl + t 查看某个类的继承关系 4 alt + 上/下 移动当前行上或者下 5 ctrl + / 行注释 ...
- Python学习-25.Python中的分数
在Python中,不止有浮点数(float),而且还有分数(Fraction)这个类型. 要使用分数,必须引入一个模块. import fractions 然后就可以声明一个分数了 x = fract ...
- Leader Election 选举算法
今天讲一讲分布式系统中必不可少的选举算法. leader 就是一堆服务器中的协调者,某一个时刻只能有一个leader且所有服务器都承认这个leader. leader election就是在一组进程中 ...
- 仿建设银行APP首页效果
仿建设银行APP首页效果 下载地址: http://pan.baidu.com/s/1eRMYEzC 下载后需要解压,解压密码联系:390980233 收费88元 HTML+JS实现,下载即可试用. ...
- js实现回车登陆
2018-11-15 $(document).keydown(function (event) { if (event.keyCode == 13) { $("#LoginBtn" ...
- 【C#进阶】委托那些事儿(二)
二.传统的委托 接下来讲一讲方法参数.下面以“餐馆服务员为客户下单”[2]的事件作为描述.一般对事件的做法分3个部分: 1. 方法参数 EventArgs,一般用于传送数据.在本例场景中 public ...
- JAVA 从头开始<六>
一.静态代码块 静态代码块不需要创建对象才执行,比对象数据优先存在于内存中 二.静态函数 三.单例设计模式 1.饿汉单例模式 缺点:一声明就创建一个对象,没有使用的话就浪费了. 2.懒汉单例模式 1. ...
