#-*- coding:utf-8 -*-
#Tensorflow的嵌入Layer
import numpy as np
import tensorflow as tf
sess=tf.Session() #创建占位符和数据
my_array=np.array([[1.,3.,5.,7.,9.],
[-2.,0.,2.,4.,6.],
[-6,-3,0.,3.,6.]])
x_vars=np.array([my_array,my_array+1])
x_data=tf.placeholder(tf.float32,shape=(3,5))
#创建矩阵乘法和加法中要用到的常用矩阵
m1=tf.constant([[1.],[0.],[-1.],[2.],[4.]])
m2=tf.constant([[2.]])
a1=tf.constant([[10.]]) #声明操作,表示成计算图
prod1=tf.matmul(x_data,m1)
print sess.run(prod1,feed_dict={x_data:my_array})
print '-'*80
prod2=tf.matmul(prod1,m2)
print sess.run(prod2,feed_dict={x_data:my_array})
print '-'*80
add1=tf.add(prod2,a1)
print sess.run(add1,feed_dict={x_data:my_array})
print '-'*80 #tensorboard --logdir=/path/to/log-directory
#运行上面的代码,可以用tensorboard可视化,最好利用chrome,Firefox好像不怎么支持
for x_var in x_vars:
writer = tf.summary.FileWriter('./graphs', sess.graph)
print sess.run(add1,feed_dict={x_data:x_var})
writer.close()
#-*- coding:utf-8 -*-
#Tensorflow的多层Layer
import numpy as np
import tensorflow as tf
sess=tf.Session() #通过numpy创建2D图像,4x4像素
x_shape=[1,4,4,1]
x_val=np.random.uniform(size=x_shape) #创建占位符
x_data=tf.placeholder(tf.float32,shape=x_shape) #创建滑动窗口
my_filter=tf.constant(0.25,shape=[2,2,1,1])
my_strides=[1,2,2,1]
mov_avg_layer=tf.nn.conv2d(x_data,my_filter,my_strides,padding='SAME',name='Moving_Avg_Window') #自定义Layer,操作滑动窗口平均的2x2的返回值
def custom_layer(input_matrix):
input_matrix_sqeezed=tf.squeeze(input_matrix)
A=tf.constant([[1.,2.],[-1.,3.]])
b=tf.constant(1.,shape=[2,2])
temp1=tf.matmul(A,input_matrix_sqeezed)#
temp=tf.add(temp1,b)# Ax+b
return tf.sigmoid(temp) with tf.name_scope('Custom_Layer') as scope:
custom_layer1=custom_layer(mov_avg_layer) print sess.run(custom_layer1,feed_dict={x_data:x_val})


tensorflow进阶篇-3的更多相关文章

  1. tensorflow进阶篇-5(反向传播2)

    上面是一个简单的回归算法,下面是一个简单的二分值分类算法.从两个正态分布(N(-1,1)和N(3,1))生成100个数.所有从正态分布N(-1,1)生成的数据目标0:从正态分布N(3,1)生成的数据标 ...

  2. tensorflow进阶篇-5(反向传播1)

    这里将讲解tensorflow是如何通过计算图来更新变量和最小化损失函数来反向传播误差的:这步将通过声明优化函数来实现.一旦声明好优化函数,tensorflow将通过它在所有的计算图中解决反向传播的项 ...

  3. tensorflow进阶篇-4(损失函数2)

    Hinge损失函数主要用来评估支持向量机算法,但有时也用来评估神经网络算法.下面的示例中是计算两个目标类(-1,1)之间的损失.下面的代码中,使用目标值1,所以预测值离1越近,损失函数值越小: # U ...

  4. tensorflow进阶篇-4(损失函数1)

    L2正则损失函数(即欧拉损失函数),L2正则损失函数是预测值与目标函数差值的平方和.L2正则损失函数是非常有用的损失函数,因为它在目标值附近有更好的曲度,并且离目标越近收敛越慢: # L = (pre ...

  5. tensorflow进阶篇-4(损失函数3)

    Softmax交叉熵损失函数(Softmax cross-entropy loss)是作用于非归一化的输出结果只针对单个目标分类的计算损失.通过softmax函数将输出结果转化成概率分布,然后计算真值 ...

  6. Membership三步曲之进阶篇 - 深入剖析Provider Model

    Membership 三步曲之进阶篇 - 深入剖析Provider Model 本文的目标是让每一个人都知道Provider Model 是什么,并且能灵活的在自己的项目中使用它. Membershi ...

  7. idea 插件的使用 进阶篇

    CSDN 2016博客之星评选结果公布    [系列直播]零基础学习微信小程序!      "我的2016"主题征文活动   博客的神秘功能 idea 插件的使用 进阶篇(个人收集 ...

  8. 2. web前端开发分享-css,js进阶篇

    一,css进阶篇: 等css哪些事儿看了两三遍之后,需要对看过的知识综合应用,这时候需要大量的实践经验, 简单的想法:把qq首页全屏另存为jpg然后通过ps工具切图结合css转换成html,有无从下手 ...

  9. windows系统快捷操作の进阶篇

    上次介绍了windows系统上一些自带的常用快捷键,有些确实很方便,也满足了我们的一部分需求.但是我们追求效率的步伐怎会止步于此?这一次我将会进一步介绍windows上提升效率的方法. 一:运行 打开 ...

随机推荐

  1. 破解Unity5.3.4f1

    破解的目的是将受限的个人版变为全功能的Pro版,破解后就可以使用所有功能了,界面也变成了黑色的主题. 破解网址(支持最新版的5.3.4f1): http://www.ceeger.com/forum/ ...

  2. python5-常用模块

    collection 模块 # pypi 可以查询python的模块在内置数据类型(dict.list.set.tuple)的基础上,collections模块还提供了几个额外的数据类型:Counte ...

  3. (线段树) Count the Colors --ZOJ --1610

    链接: http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82832#problem/F http://acm.zju.edu.cn/onli ...

  4. android中Actionbar详解

    1.什么是Action BarAction Bar被认为是新版Android系统中最重要的交互元素,在程序运行中一直置于顶部,主要起到的作用在于:1)突出显示一些重要操作(如“最新”.“搜索”等)2) ...

  5. hdu 1163 Eddy's digital Roots 【九余数定理】

    http://acm.hdu.edu.cn/showproblem.php?pid=1163 九余数定理: 如果一个数的各个数位上的数字之和能被9整除,那么这个数能被9整除:如果一个数各个数位上的数字 ...

  6. LCS,LIS,LCIS学习

    for(int i = 1;i <= n;i++) { int dpmax = 0; for(int j = 1;j <= m;j++) { dp[i][j] = dp[i-1][j]; ...

  7. Java中取两位小数

    请参考下面函数: private String getFormated(String s){        float f=Float.parseFloat(s);        java.text. ...

  8. [翻译] Virtual method interception 虚方法拦截

    原文地址:http://blog.barrkel.com/2010/09/virtual-method-interception.html 注:基于本人英文水平,以下翻译只是我自己的理解,如对读者造成 ...

  9. js插件开发的一些感想和心得

    起因 如果大家平时做过一些前端开发方面的工作,一定会有这样的体会:页面需要某种效果或者插件的时候,我们一般会有两种选择:1.上网查找相关的JS插件,学习其用法2.自己造轮子,开发插件. 寻找存在的插件 ...

  10. LeetCode147:Insertion Sort List

    题目: Sort a linked list using insertion sort. 解题思路: 按题目要求,直接进行插入排序 实现代码: #include <iostream> us ...