Mythological VI
Description
有\(1...n\)一共\(n\)个数。保证\(n\)为偶数。
小M要把这\(n\)个数两两配对, 一共配成\(n/2\)对。每一对的权值是他们两个数的和。
小M想要知道这\(n\)对里最大的权值的期望是多少。可怜的小M当然不知道啦,所以她向你求助。
请输出答案对\(10^9+7\)取模的值。
Input
一行一个正整数,表示\(n\)。
Output
一行一个整数,表示答案对\(10^9+7\)取模的值。
Sample Input
4
Sample Output
6
HINT
对于20%的数据, \(n\leq 10\)。
对于40%的数据, \(n\leq 2*10^3\)。
对于100%的数据, \(n\leq 5*10^5\)。
Solution
首先可能的最大值最大为\(n+(n-1)=2n-1\)
考虑能不能枚举最大值\(v\),算出最大值等于每个\(v\)时的方案数,除以总方案数得到概率,再算出期望。
观察得出\(v\in [n+1,2n-1]\),所以只要在这个区间内枚举即可。
可是考虑到计算最大值恰好等于\(v\)的方案数不是很可行,于是我们看看能不能转化成先求前缀和:\(g[i]\)表示最大值小于等于\(v\)的方案数是多少。自然地,最大值等于\(v\)时的方案数为\(g_v-g_{v-1}\)。
下面看怎么求\(g_v\),记\(a=\lfloor \frac v 2 \rfloor\):
首先这\(n\)个数中,有些比较特别:\((a,n]\)这些数,必须选择位于\([1,a]\)中的数,否则最大值可能超过\(v\)。那就先考虑这些数的匹配方法。
先看看\(n\)有多少种选法:\(n\)必须和\([1,v-n]\)中的数匹配,共\(v-n\)种选择。
\(n-1\)呢?必须和\([1,v-(n-1)]\)中的数匹配,共\(v-n+1\)种选择;但是\(n\)已经从\([1,v-n]\)挑走了一个数,所以总选择方案减1,仍然是\(v-n\)种选择。
由此从大到小考虑\((a,n]\),发现每个数的可选择方案都是\(v-n\),那么为\((x,n]\)共\(n-a\)个数选择好匹配的总方案数为\((v-n)^{n-a}\)。
此时\([1,a]\)个数中已有\(n-a\)个数被挑走做匹配了,剩下\(a-(n-a)=2a-n\)个数,由于它们都小于等于\(a\),所以剩下的数可以任意匹配而不会出现一对数权值之和大于\(v\)的情况。
记\(f(x)\)表示\(x\)个点任意两两匹配的方案数,推一推就得知\(f(x)=f(x-2)*(x-1)\),意思就是一个点从其他\(x-1\)个点挑一个,移除这两个点后继续操作。
则剩下的数的方案为\(f(2a-n)\)。
所以\(g_v=(v-n)^{n-a}*f(2a-n)\)。
总方案数是多少?可以理解为\(g_{2n}\),也可以理解为\(f(n)\),总之就是完全没有限制时的方案数。
有了\(g\)数组,就可以算出对于最大值为\([n+1,2n-1]\)时的方案数,除以总方案数算出每个最大值出现的概率,最后就可以算出期望了。
#include <cstdio>
using namespace std;
const int mod=1e9+7;
const int N=500010;
int n,f[N*2],g[N*2];
inline int pow(int x,int y){
int res=1;
for(;y;x=1LL*x*x%mod,y>>=1)
if(y&1) res=1LL*res*x%mod;
return res;
}
int main(){
scanf("%d",&n);
f[0]=1;
for(int i=2;i<=n;i+=2) f[i]=1LL*f[i-2]*(i-1)%mod;
for(int v=n+1;v<=n*2;v++)
g[v]=1LL*pow(v-n,n-v/2)*f[v/2-(n-v/2)]%mod;
int ans=0;
for(int v=n+1;v<=n*2;v++)
(ans=ans+1LL*(g[v]-g[v-1])*v%mod)%=mod;
ans=1LL*ans*pow(g[n*2],mod-2)%mod;
printf("%d\n",ans<0?ans+mod:ans);
return 0;
}
Mythological VI的更多相关文章
- 【XSY2786】Mythological VI 数学
题目描述 有\(1\sim n\)一共\(n\)个数.保证\(n\)为偶数. 你要把这\(2n\)个数两两配对,一共配成\(n\)对.每一对的权值是他们两个数的和. 你想要知道这\(n\)对里最大的权 ...
- 在docker容器中vi指令找不到
在使用docker容器时,有时候里边没有安装vi,敲vi命令时提示说:vi: command not found,这个时候就需要安装vi,可是当你敲apt-get install vi命令时,提示: ...
- linux vi 命令大全
进入vi的命令 vi filename :打开或新建文件,并将光标置于第一行首 vi +n filename :打开文件,并将光标置于第n行首 vi + filename :打开文件,并将光标置于最后 ...
- Cygwin中解决vi编辑器方向键和Backspace键不好使、安装vim的方法
修改.virc文件(如果没有就创建)vi .virc 添加以下内容set nocpset backspace=start,indent,eol 保存退出:wq 如果是vim就修改.vimrc文件. 由 ...
- vi(vim)键盘图及其基本命令
进入vi vi filename 打开或新建文件,并将光标置于第一行首 vi +n filename 打开文件,并将光标置于第 n行首 vi + fi ...
- vi安装Vundle+YouCompleteMe+注释快捷'scrooloose/nerdcommenter'
Vundle is short for Vim bundle and is a Vim plugin manager. 从git上下载vundle $ git clone https://github ...
- vi学习总结
1.模式 命令行模式:光标的移动.内容删除移动复制操作 插入模式:文字输入,即编辑状态 底行模式:文件保存或退出vi,设置编辑环境 2.基本操作 vi myfile,输入vi 文件名,,则进入vi. ...
- vim(vi)常用操作及记忆方法
vi(vim)可以说是linux中用得最多的工具了,不管你配置服务也好,写脚本也好,总会用到它.但是,vim作为一个“纯字符”模式下的工具,它的操作和WINDOWS中的文本编辑工具相比多少有些复杂.这 ...
- vim vi Ubuntu
在vi编辑模式下按退格键不能删除内容,按方向键不能上下左右移动?如果是则:1. 在vi里非编辑模式下按冒号进入到末行命令模式,然后输入set nocompatible,回车,然后在进入vi编辑模式,看 ...
随机推荐
- Unity3D — — UGUI之RectTransform
Mask.GetComponent<RectTransform>().anchoredPosition(子物体) = hotKey_image.rectTransform.anchored ...
- 从零系列--开发npm包(二)
一.利用shell简化组合命令 set -e CVERSION=$(git tag | ) echo "current version:$CVERSION" echo " ...
- MariaDB远程连接问题
MariaDB在设置完通过Navicat Premium远程连接账号验证通过,但是无法正常使用工具的功能,只能使用sql语句查询,但是通过控制台命令功能正常. 经过修改账号权限,添加新用户等功能都无法 ...
- Python序列之列表 (list)
作者博文地址:http://www.cnblogs.com/spiritman/ 列表是Python中最基本的数据结构,是Python最常用的数据类型.Python列表是任意对象的有序集合,通过索引访 ...
- 2018年第九届蓝桥杯【C++省赛B组】
2标题:明码 汉字的字形存在于字库中,即便在今天,16点阵的字库也仍然使用广泛.16点阵的字库把每个汉字看成是16x16个像素信息.并把这些信息记录在字节中. 一个字节可以存储8位信息,用32个字节就 ...
- 团队冲刺--Seven
昨天: 司宇航:测试功能版块,优化功能版块. 马佳慧:优化界面 . 王金萱:合并程序. 季方: 合并程序. 今天: 司宇航:优化功能版块. 马佳慧:优化界面 . 王金萱:优化界面. 季方: 完善功 ...
- Task 6.4 冲刺Two之站立会议8
今天团队主要进行了用户使用的部分,因为软件操作相对来说比较复杂,因为要改很多东西,比方用户注册,还有更改软件连接服务器的IP.所以我们需要对用户进行详细地讲解.
- POJ 2151 Check the difficulty of problems 概率dp+01背包
题目链接: http://poj.org/problem?id=2151 Check the difficulty of problems Time Limit: 2000MSMemory Limit ...
- 25_IO_第25天(Properties、序列化流、打印流、CommonsIO)_讲义
今日内容介绍 1.Properties集合 2.序列化流与反序列化流 3.打印流 4.commons-IO 01Properties集合的特点 * A: Properties集合的特点 * a: Pr ...
- 深入理解Java类加载器(1)
类加载器概述: java类的加载是由虚拟机来完成的,虚拟机把描述类的Class文件加载到内存,并对数据进行校验,解析和初始化,最终形成能被java虚拟机直接使用的java类型,这就是虚拟机的类加载机制 ...