【刷题】HDU 3435 A new Graph Game
Problem Description
An undirected graph is a graph in which the nodes are connected by undirected arcs. An undirected arc is an edge that has no arrow. Both ends of an undirected arc are equivalent--there is no head or tail. Therefore, we represent an edge in an undirected graph as a set rather than an ordered pair.
Now given an undirected graph, you could delete any number of edges as you wish. Then you will get one or more connected sub graph from the original one (Any of them should have more than one vertex).
You goal is to make all the connected sub graphs exist the Hamiltonian circuit after the delete operation. What’s more, you want to know the minimum sum of all the weight of the edges on the “Hamiltonian circuit” of all the connected sub graphs (Only one “Hamiltonian circuit” will be calculated in one connected sub graph! That is to say if there exist more than one “Hamiltonian circuit” in one connected sub graph, you could only choose the one in which the sum of weight of these edges is minimum).
For example, we may get two possible sums:

(1) 7 + 10 + 5 = 22
(2) 7 + 10 + 2 = 19
(There are two “Hamiltonian circuit” in this graph!)
Input
In the first line there is an integer T, indicates the number of test cases. (T <= 20)
In each case, the first line contains two integers n and m, indicates the number of vertices and the number of edges. (1 <= n <=1000, 0 <= m <= 10000)
Then m lines, each line contains three integers a,b,c ,indicates that there is one edge between a and b, and the weight of it is c . (1 <= a,b <= n, a is not equal to b in any way, 1 <= c <= 10000)
Output
Output “Case %d: “first where d is the case number counted from one. Then output “NO” if there is no way to get some connected sub graphs that any of them exists the Hamiltonian circuit after the delete operation. Otherwise, output the minimum sum of weight you may get if you delete the edges in the optimal strategy.
Sample Input
3
3 4
1 2 5
2 1 2
2 3 10
3 1 7
3 2
1 2 3
1 2 4
2 2
1 2 3
1 2 4
Sample Output
Case 1: 19
Case 2: NO
Case 3: 6
Hint
In Case 1:
You could delete edge between 1 and 2 whose weight is 5.
In Case 2:
It’s impossible to get some connected sub graphs that any of them exists the Hamiltonian circuit after the delete operation.
Description(CHN)
有n个点和m条边,你可以删去任意条边,使得所有点在一个哈密顿路径上,路径的权值得最小。
Solution
实际上就是找有向图最小权环覆盖
经典套路,一个点拆成入点和出点,如果有 \(u\) 到 \(v\) 的边,那么将 \(u\) 的出点连向 \(v\) 的入点
那么变成了一个二分图,这个二分图的一个完美匹配就是原图中的一个环覆盖
如果边有权,要求最小或最大,其实就是二分图最大权匹配
跑费用流即可
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=1000+10,MAXM=10000+10,inf=2147483647;
int T,tn,n,m,e=1,answas,beg[MAXN<<1],nex[MAXM<<3],to[MAXM<<3],cap[MAXM<<3],cur[MAXN<<1],p[MAXN<<1],s,t,vis[MAXN<<1],clk,G[MAXN][MAXN];
ll was[MAXM<<2],level[MAXN<<2];
std::queue<int> q;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y,int z,int w)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
cap[e]=z;
was[e]=w;
to[++e]=x;
nex[e]=beg[y];
beg[y]=e;
cap[e]=0;
was[e]=-w;
}
inline bool bfs()
{
for(register int i=1;i<=t;++i)level[i]=inf;
level[s]=0;
p[s]=1;
q.push(s);
while(!q.empty())
{
int x=q.front();
q.pop();
p[x]=0;
for(register int i=beg[x];i;i=nex[i])
if(cap[i]&&level[to[i]]>level[x]+was[i])
{
level[to[i]]=level[x]+was[i];
if(!p[to[i]])p[to[i]]=1,q.push(to[i]);
}
}
return level[t]!=inf;
}
inline int dfs(int x,int maxflow)
{
if(x==t||!maxflow)return maxflow;
int res=0;
vis[x]=clk;
for(register int &i=cur[x];i;i=nex[i])
if((vis[x]^vis[to[i]])&&cap[i]&&level[to[i]]==(level[x]+was[i]))
{
int f=dfs(to[i],min(maxflow,cap[i]));
res+=f;
cap[i]-=f;
cap[i^1]+=f;
answas+=f*was[i];
maxflow-=f;
if(!maxflow)break;
}
vis[x]=0;
return res;
}
inline int MCMF()
{
int res=0;
while(bfs())clk++,memcpy(cur,beg,sizeof(cur)),res+=dfs(s,inf);
return res;
}
int main()
{
read(T);
while(T--)
{
printf("Case %d: ",++tn);
e=1;memset(beg,0,sizeof(beg));clk=0;
answas=0;
read(n);read(m);
for(register int i=1;i<=n;++i)
for(register int j=1;j<=n;++j)G[i][j]=inf;
for(register int i=1;i<=m;++i)
{
int u,v,k;read(u);read(v);read(k);
chkmin(G[u][v],k),chkmin(G[v][u],k);
}
for(register int i=1;i<=n;++i)
for(register int j=1;j<=n;++j)
if(G[i][j]!=inf)insert(j,i+n,1,G[i][j]);
s=n+n+1,t=s+1;
for(register int i=1;i<=n;++i)insert(s,i,1,0),insert(i+n,t,1,0);
if(MCMF()!=n)puts("NO");
else write(answas,'\n');
}
return 0;
}
【刷题】HDU 3435 A new Graph Game的更多相关文章
- hdu 3435 A new Graph Game
http://acm.hdu.edu.cn/showproblem.php?pid=3435 #include <cstdio> #include <iostream> #in ...
- HDU 3435 A new Graph Game(最小费用流:有向环权值最小覆盖)
http://acm.hdu.edu.cn/showproblem.php?pid=3435 题意:有n个点和m条边,你可以删去任意条边,使得所有点在一个哈密顿路径上,路径的权值得最小. 思路: 费用 ...
- HDU 3435 A new Graph Game(最小费用最大流)&HDU 3488
A new Graph Game Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- 【HDU 3435】 A new Graph Game (KM|费用流)
A new Graph Game Problem Description An undirected graph is a graph in which the nodes are connected ...
- HDU 自动刷题机 Auto AC (轻轻松松进入HDU首页)
前言: 在写这篇文章之前,首先感谢给我思路以及帮助过我的学长们 以下4篇博客都是学长原创,其中有很多有用的,值得学习的东西,希望能够帮到大家! 1.手把手教你用C++ 写ACM自动刷题神器(冲入HDU ...
- 手把手教你用C++ 写ACM自动刷题神器(冲入HDU首页)
转载注明原地址:http://blog.csdn.net/nk_test/article/details/49497017 少年,作为苦练ACM,通宵刷题的你 是不是想着有一天能够荣登各大OJ榜首,俯 ...
- 教你用python写:HDU刷题神器
声明:本文以学习为目的,请不要影响他人正常判题 HDU刷题神器,早已被前辈们做出来了,不过没有见过用python写的.大一的时候见识了学长写这个,当时还是一脸懵逼,只知道这玩意儿好屌-.时隔一年,决定 ...
- 【刷题】HDU 2222 Keywords Search
Problem Description In the modern time, Search engine came into the life of everybody like Google, B ...
- NOIp2018停课刷题记录
Preface 老叶说了高中停课但是初中不停的消息后我就为争取民主献出一份力量 其实就是和老师申请了下让我们HW的三个人听课结果真停了 那么还是珍惜这次机会好好提升下自己吧不然就\(AFO\)了 Li ...
随机推荐
- Python读取文件编码解码问题
用chardet检测编码 import chardet raw = open("model.json", 'rb').read() result = chardet.detect( ...
- 脚本处理iOS的Crash日志
背景 当我们打包app时,可以选择生成对应的符号表,其保存 16 进制函数地址映射信息,通过给定的函数起始地址和偏移量,可以对应函数具体信息以供分析. 所以我们拿到测试给的闪退日志(.crash)时, ...
- valgrind使用简介
1.问题 虽然C/C++是一种非常有用且功能强大的语言,但很难调试. 某些时候可能遇到内存错误. 如果知道出错 ,或者程序一直崩溃,我们可以用gdb/DBX去调试. 但是,有时遇到的问题是由于内存错误 ...
- vue 子组件传值给父组件
子组件通过this.$emit("event",[args,....]),传值给父组件 HTML部分: <div id="app"> <tmp ...
- TensorFlow学习之路1-TensorFlow介绍
TensorFlow是一个采用数据流图(data flow graphs),用于数据计算的开源软件库. 什么是数据流图? TensorFlow的数据流图是由“节点”(nodes)和“线”(edges) ...
- c++ 整数和字符串的转化
一.string转int的方式 采用最原始的string, 然后按照十进制的特点进行算术运算得到int,但是这种方式太麻烦,这里不介绍了. 采用标准库中atoi函数. "; int a = ...
- 多线程分段下载研究的python实现(一)
我一直对下载文件比较感兴趣.现在我下载文件大部分是用迅雷,但迅雷也有一些不如意的地方,内存占用大,一些不必要的功能太多,不可定制.尤其是最后一点.现在有些下载对useragent,cookie,aut ...
- iOS 模块化、组件化方案探索(利用cocoapods 、git 创建私有仓库)
来自bang's blog http://blog.cnbang.net/tech/3080/ 模块化 简单来说,模块化就是将一个程序按照其功能做拆分,分成相互独立的模块,以便于每个模块只包含与其功能 ...
- 为什么找程序员一定要看他的 GitHub
听说 最开始听到这句话是某知名互联网公司大牛告诉我的,我很不以为然,不过迫于他是"leader"我也注册了一个 highsea (广告 0.0):当然我可懒得 push 更别提 c ...
- 手动搭建一个webpack+react笔记
{ "name": "lottery", "version": "1.0.0", "description&q ...