【AtCoder】AGC011 C - Squared Graph
题解
大意是给出一张图,然后建一张新图,新图的点标号是(a,b)
如果a和c有一条边,b和d有一条边,那么(a,b)和(c,d)之间有一条边
我们把这道题当成这道题来做,给出两张图,如果第一张图有边(a,c),第二张图有边(b,d),那么第三张图上有边(a,b)(c,d)
如果某张图只有一个点,那么答案就是另一张图的点数
然后我们发现对于某两个点对(a,c),(b,d)如果有一条长度为l的路径,那么(a,b)(c,d)一定可以联通
但是我们发现我们经过的路径可以不是简单路径,也就是我们反复走一条边,那么我们只和路径长度的奇偶性有关了
很容易想到二分图,如果两张图都是二分图且联通的话,那么第三张图联通分量的个数是2
分别是\(S_a * T_b \cup T_a * S_b\)和\(S_a * S_b \cup T_a * T_b\)
而两张图都是非二分图且联通的话,任意路径的奇偶性都可以互相转化,所以整张图就是一个联通块
那么我们求出两个图的孤立点个数\(i_A,i_B\),两个图的非二分图联通块个数\(p_A,p_B\),两个图的二分图联通块个数\(q_A,q_B\)
答案就是
\(i_Ai_B + i_A(N_B - i_B) + i_B(N_A - i_A) + p_Ap_B + p_Aq_B + p_Bq_A + 2q_Aq_B\)
代码
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <vector>
#include <set>
#include <cmath>
#include <bitset>
#include <queue>
#define enter putchar('\n')
#define space putchar(' ')
//#define ivorysi
#define pb push_back
#define mo 974711
#define pii pair<int,int>
#define mp make_pair
#define fi first
#define se second
#define MAXN 200005
#define eps 1e-12
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 - '0' + c;
c = getchar();
}
res = res * f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) out(x / 10);
putchar('0' + x % 10);
}
int N,M,I,P,Q;
struct node {
int next,to;
}E[MAXN * 2];
int head[MAXN],sumE,col[MAXN];
bool vis[MAXN];
void dfs(int u) {
vis[u] = 1;
for(int i = head[u] ; i ; i = E[i].next) {
int v = E[i].to;
if(!vis[v]) {
dfs(v);
}
}
}
bool paint(int u) {
if(!col[u]) col[u] = 2;
for(int i = head[u] ; i; i = E[i].next) {
int v = E[i].to;
if(!col[v]) {col[v] = col[u] ^ 1;if(!paint(v)) return false;}
else if(col[v] == col[u]) return false;
}
return true;
}
void add(int u,int v) {
E[++sumE].to = v;
E[sumE].next = head[u];
head[u] = sumE;
}
void Solve() {
read(N);read(M);
int u,v;
for(int i = 1 ; i <= M ; ++i) {
read(u);read(v);
add(u,v);add(v,u);
}
for(int i = 1 ; i <= N ; ++i) {
if(!head[i]) ++I;
else if(!vis[i]){
dfs(i);
if(paint(i)) ++Q;
else ++P;
}
}
int64 ans = 1LL * I * I + 2LL * I * (N - I);
ans += 1LL * P * P + 2LL * P * Q + 2LL * Q * Q;
out(ans);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
}
【AtCoder】AGC011 C - Squared Graph的更多相关文章
- 【AtCoder】AGC011
AGC011 A - Airport Bus 大意:有N个人,每个人只能在\([T_i,T_i +K]\)这段区间乘车,每辆车安排C人,问最少安排几辆车 直接扫,遇到一个没有车的在\(T_i +K\) ...
- 【AtCoder】AGC011 E - Increasing Numbers
题解 题是真的好,我是真的不会做 智商本还是要多开啊QwQ 我们发现一个非下降的数字一定可以用不超过九个1111111111...1111表示 那么我们可以得到这样的一个式子,假如我们用了k个数,那么 ...
- 【AtCoder】AGC011 D - Half Reflector
题解 大意是n个管子排成一排,每个管子有两种状态,A状态是从某个方向进去,从原方向出来,B状态是从某个方向进去,从另一个方向出来 球经过一个A状态的管子这个管子会立刻变成B状态,经过一个B状态的管子会 ...
- 【AtCoder】ARC092 D - Two Sequences
[题目]AtCoder Regular Contest 092 D - Two Sequences [题意]给定n个数的数组A和数组B,求所有A[i]+B[j]的异或和(1<=i,j<=n ...
- 【Atcoder】CODE FESTIVAL 2017 qual A D - Four Coloring
[题意]给定h,w,d,要求构造矩阵h*w满足任意两个曼哈顿距离为d的点都不同色,染四色. [算法]结论+矩阵变换 [题解] 曼哈顿距离是一个立着的正方形,不方便处理.d=|xi-xj|+|yi-yj ...
- 【AtCoder】ARC 081 E - Don't Be a Subsequence
[题意]给定长度为n(<=2*10^5)的字符串,求最短的字典序最小的非子序列字符串. http://arc081.contest.atcoder.jp/tasks/arc081_c [算法]字 ...
- 【AtCoder】AGC022 F - Leftmost Ball 计数DP
[题目]F - Leftmost Ball [题意]给定n种颜色的球各k个,每次以任意顺序排列所有球并将每种颜色最左端的球染成颜色0,求有多少种不同的颜色排列.n,k<=2000. [算法]计数 ...
- 【AtCoder】AGC005 F - Many Easy Problems 排列组合+NTT
[题目]F - Many Easy Problems [题意]给定n个点的树,定义S为大小为k的点集,则f(S)为最小的包含点集S的连通块大小,求k=1~n时的所有点集f(S)的和取模92484403 ...
- 【AtCoder】ARC067 F - Yakiniku Restaurants 单调栈+矩阵差分
[题目]F - Yakiniku Restaurants [题意]给定n和m,有n个饭店和m张票,给出Ai表示从饭店i到i+1的距离,给出矩阵B(i,j)表示在第i家饭店使用票j的收益,求任选起点和终 ...
随机推荐
- Ubuntu下快速部署安装 Nginx + PHP + MySQL 笔记
先更新软件库 sudo apt-get update 安装 MySQL sudo apt-get install mysql-server 安装 Nginx sudo apt-get inst ...
- 使iis支持asp.net扩展
打开控制面板 - 程序和功能,点击左边 “打开或关闭 Windows 功能”. 在弹出的对话框中,展开 “Internet信息服务”,展开“万维网服务”,展开“应用程序开发功能”,勾选“ASP”和“A ...
- 【转】WPF的知识
[-] 闲话WPF之二XAML概述 闲话WPF之五XAML中的类型转换 闲话WPF之十六WPF中的资源 2 闲话WPF之十九WPF中的传递事件 1 闲话WPF之二十WPF中的传递事件 2 闲话WPF之 ...
- sql server 查询本周、本月所有天数的数据
查询本月所有的天数: --本月所有的天数 ),) day from (),,)+'-01' day) t1, ( ) t2 ),) ),,)+'%' 查询本周所有的天数: ),,),) ),,),) ...
- 编程语言BrainkFuck
BrainFuck由Urban Müller在1993年创建,是经常被吐槽的语言,不过我觉得除了名字其它都还挺正常的,没错我觉得这个语言设计的很正常没有Fuck到我的脑子,大概是因为我根本就没有脑子吧 ...
- 30、hashCode方法
HashCode方法的作用 在HashSet中的元素是不能重复的,jvm可以通过equals方法来判断两个对象是否相同,假设自定义一个Person类里面有10个成员变量,每调用一次equals方法需要 ...
- 20165227朱越 预备作业3 Linux安装及学习
预备作业3 Linux安装及学习 Linux的安装 虚拟机的安装远没有想象中的那样容易,下载还没有出现什么问题,当我安装的时候,第一个问题出现在创建虚拟机时选择安装的虚拟机版本和类型的时候的错误 当时 ...
- 20155303狄惟佳预备作业三Linux学习笔记
20155303狄惟佳预备作业三Linux学习笔记 初次接触Ubuntu系统以及Linux内核,了解了其产生的历史,从感性来讲,深深吸引我的是其中蕴含的珍贵的开源精神,以及Stallman等人对&qu ...
- Chapter 4 深入理解Caffe MNIST DEMO中的LeNet网络模型
明代思想家王阳明提出了"知行合一",谓认识事物的道理与在现实中运用此道理,是密不可分的一回事.我以为这样的中国哲学话语,对于学习者来说,极具启发意义,要细细体会.中华文明源远流长, ...
- 82.Linux之VMware10.0.4_x64安装
一直想写linux前期软件的一些安装配置的博客,因为中途去弄CORDIC算法了,今天上午刚弄好,除法,乘累加,三角函数等都能达到要求,所以现在来写这块的博客,CORDIC博客就不写了,因为网上很多.V ...