windows多线程(六) 互斥量Mutex与关键段CriticalSection比较
一、关键段CS 和 互斥量Mutex 的相同点:都有线程拥有权
关键段和互斥量都有线程拥有权,即可以被一个线程拥有。在 前面讲关键段CS的文章中有说到,关键段结构体的第四个参数保存着拥有该关键段的线程的句柄,具体如下:
typedef struct _RTL_CRITICAL_SECTION {
PRTL_CRITICAL_SECTION_DEBUG DebugInfo;
//
// The following three fields control entering and exiting the critical
// section for the resource
//
LONG LockCount;
LONG RecursionCount;
HANDLE OwningThread; // from the thread's ClientId->UniqueThread
HANDLE LockSemaphore;
ULONG_PTR SpinCount; // force size on 64-bit systems when packed
} RTL_CRITICAL_SECTION, *PRTL_CRITICAL_SECTION;
第一个参数:PRTL_CRITICAL_SECTION_DEBUG DebugInfo; 调试的时候用的,先不做介绍。
第二个参数:LONG LockCount; 初始化为-1,n表示有n个线程在等待。
第三个参数:LONG RecursionCount; 表示该关键段的拥有线程对此资源获得关键段次数,初为0。
第四个参数:HANDLE OwningThread; 即拥有该关键段的线程句柄
第五个参数:HANDLE LockSemaphore; 实际上是一个自复位事件。
第六个参数:ULONG_PTR SpinCount; 旋转锁的设置,用于多处理器。
现在我们来分析以下程序:
#include<iostream>
#include <windows.h>
using namespace std;
const unsigned int THREAD_NUM = 10;
unsigned int g_Count = 0;
CRITICAL_SECTION cs;
DWORD WINAPI ThreadFunc(LPVOID);
int main()
{
InitializeCriticalSection(&cs);
HANDLE hThread[THREAD_NUM];
for (int i = 0; i < THREAD_NUM; i++)
{
EnterCriticalSection(&cs); // 进入关键段,执行这一句时主线程就获得了这个关键段的拥有权。
hThread[i] = CreateThread(NULL, 0, ThreadFunc,0, 0, NULL);
}
WaitForMultipleObjects(THREAD_NUM, hThread,true,INFINITE);
cout << THREAD_NUM << " 个线程全部返回" << endl;
return 0;
}
DWORD WINAPI ThreadFunc(LPVOID p)
{
LeaveCriticalSection(&cs); // 离开关键段
Sleep(50);
EnterCriticalSection(&cs); // 进入关键段
cout<<"g_Count 的值为:"<<g_Count++<<endl;
LeaveCriticalSection(&cs); // 离开关键段
Sleep(50);
return 0;
}
如下图所示加上两个断点进行调试,正常来说程序应该是依次经过两个断点,但是调试时我们发现,程序会多次重复进入第一个断点,这是因为执行到第一个断点式时主线程就获得了这个关键段的拥有权。

同样地,Mutex也拥有线程所有权,需要了解互斥量看这里。和上面一样,我们写这样一个程序
#include <iostream>
#include <windows.h>
using namespace std;
const unsigned int THREAD_NUM = 10;
unsigned int g_Count = 0;
CRITICAL_SECTION cs;
HANDLE g_Mutex;
DWORD WINAPI ThreadFunc(LPVOID);
int main()
{
InitializeCriticalSection(&cs);
g_Mutex = CreateMutex(NULL, false, NULL); //初始化互斥量为触发状态
HANDLE hTread[THREAD_NUM];
for (int i = 0; i < THREAD_NUM;i++)
{
WaitForSingleObject(g_Mutex, INFINITE); //等待互斥量触发
hTread[i] = CreateThread(NULL, 0, ThreadFunc, 0, 0, NULL);
}
WaitForMultipleObjects(THREAD_NUM, hTread, true, INFINITE);
cout << THREAD_NUM << " 个线程全部返回" << endl;
return 0;
}
DWORD WINAPI ThreadFunc(LPVOID p)
{
//ReleaseMutex(g_Mutex);
Sleep(50);
EnterCriticalSection(&cs); // 进入关键段
cout << "g_Count 的值为:" << g_Count++ << endl;
LeaveCriticalSection(&cs); // 离开关键段
Sleep(50);
ReleaseMutex(g_Mutex); //触发互斥量
return 0;
}
同样地,我们在程序中下两个断点,同样地程序会不经过第二个断点,而重复经过第一个断点。

前面关键段和互斥量两篇文章我们说了关键段CS和互斥量Mutex不能做到线程同步,只能做到临界资源互斥访问,就是因为,他它们都有线程拥有权的原因。
二、关键段CS 和 互斥量Mutex 的不同点:由于互斥量常用于多进程之间的线程互斥,所以它比关键段还多一个很有用的特性——“遗弃”情况的处理。
看下面的程序:
程序一:
#include <stdio.h>
#include <windows.h>
const char MutexName[] = "MyMutex"; //互斥量名字
int main()
{
HANDLE hMutex = CreateMutex(NULL, TRUE, MutexName); //创建互斥量并初始化为未触发状态
printf("互斥量已经创建,按任意键触发\n");
getch();
exit(0); //在互斥量触发前退出程序。
//ReleaseMutex(hMutex); // 触发互斥量
printf("互斥量已经被触发\n");
CloseHandle(hMutex);
return 0;
}
程序二:
#include <stdio.h>
#include <windows.h>
const char MutexName[] = "MyMutex"; //互斥量名字
int main()
{
HANDLE hMutex = OpenMutex(MUTEX_ALL_ACCESS, TRUE, MutexName); //打开互斥量
if (NULL != hMutex)
{
printf("打开互斥量成功,等待互斥量被触发\n");
DWORD mRes = WaitForSingleObject(hMutex, INFINITE); // 等待互斥量被触发
if (WAIT_ABANDONED == mRes) //判断互斥量是否被遗弃
{
printf("互斥量被遗弃。\n");
}
//printf("互斥量已经被触发\n");
}
else
{
printf("互斥量打开失败。\n");
}
CloseHandle(hMutex);
return 0;
}
先运行,程序一,然后运行程序二,如下图所示。

此时在,程序一中按任意键,使程序一在互斥量未触发之前退出,程序二输出如下:

这篇是边学边写出来的可能有不正确的地方,欢迎指出!!!!!
windows多线程(六) 互斥量Mutex与关键段CriticalSection比较的更多相关文章
- windows多线程同步--互斥量
关于互斥量的基本概念:百度百科互斥量 推荐参考博客:秒杀多线程第七篇 经典线程同步 互斥量Mutex 注意:互斥量也是一个内核对象,它用来确保一个线程独占一个资源的访问.互斥量与关键段的行为非常相似, ...
- 多线程相关------互斥量Mutex
互斥量(Mutex) 互斥量是一个可以处于两态之一的变量:解锁和加锁.只有拥有互斥对象的线程才具有访问资源的权限.并且互斥量可以用于不同进程中的线程的互斥访问. 相关函数: CreateMutex用于 ...
- 总结windows多线程同步互斥
windows多线程同步互斥--总结 我的windows多线程系列文章: windows多线程--原子操作 windows多线程同步--事件 windows多线程同步--互斥量 windows多线程同 ...
- windows多线程同步互斥--总结
我的windows多线程系列文章: windows多线程--原子操作 windows多线程同步--事件 windows多线程同步--互斥量 windows多线程同步--临界区 windows多线程同步 ...
- windows多线程(五) 互斥量 Mutex
一.互斥量 互斥量是windows的一个内核对象,互斥量与关键段的作用相似,可以用来确保全局资源的互斥访问.并且互斥量可以用在不同的进程中的线程互斥访问全局资源. 二.相关函数说明 使用互斥量Mute ...
- 转--- 秒杀多线程第七篇 经典线程同步 互斥量Mutex
阅读本篇之前推荐阅读以下姊妹篇: <秒杀多线程第四篇一个经典的多线程同步问题> <秒杀多线程第五篇经典线程同步关键段CS> <秒杀多线程第六篇经典线程同步事件Event& ...
- [一个经典的多线程同步问题]解决方案三:互斥量Mutex
本篇通过互斥量来解决线程的同步,学习其中的一些知识. 互斥量也是一个内核对象,它用来确保一个线程独占一个资源的访问.互斥量与关键段的行为非常相似,并且互斥量可以用于不同进程中的线程互斥访问资源.使用互 ...
- 多线程面试题系列(7):经典线程同步 互斥量Mutex
前面介绍了关键段CS.事件Event在经典线程同步问题中的使用.本篇介绍用互斥量Mutex来解决这个问题. 互斥量也是一个内核对象,它用来确保一个线程独占一个资源的访问.互斥量与关键段的行为非常相似, ...
- 秒杀多线程第七篇 经典线程同步 互斥量Mutex
本文转载于:http://blog.csdn.net/morewindows/article/details/7470936 前面介绍了关键段CS.事件Event在经典线程同步问题中的使用.本篇介绍用 ...
随机推荐
- Linux下开发python django程序(Cookie读写)
1.设置cookie信息(登陆成功后设置登陆用户名,有效期1小时) def login(req): if req.method == 'POST': loginform = LoginForm(req ...
- PKUWC2019题解
这里其实只放一下题面和一些提示,大家评一评有几道题可做 题面全部蒯自xzz的博客 Day 1 T1 题面 一个有向图,每一条边可能存在也可能不存在,求拓扑序列数量的期望乘\(2^m\) 没有重边自环, ...
- GBDT+LR算法解析及Python实现
1. GBDT + LR 是什么 本质上GBDT+LR是一种具有stacking思想的二分类器模型,所以可以用来解决二分类问题.这个方法出自于Facebook 2014年的论文 Practical L ...
- 传统路由和OVS区别
本文主要描述了一种将三层路由变成二层交换转发(以及二层转发变成三层路由)的实现方式,以应对OVS(OpenFlow)跨网段路由复杂的问题:当然技术本身是客观的,具体应用还要看场景. 随着SDN技术不断 ...
- loj2230 「BJOI2014」大融合
LCT裸题 我LCT学傻了这题明显可以树剖我不会树剖了 本来的siz是Splay上的子树和,并没有什么用. 所以每个点维护虚子树和和子树和 虚子树和即虚边连接的子树和,且只有在access和link操 ...
- idea 和 WebStorm 配置 http代理 并更换主题
proxy,http,socks5 当前 idea 主题为:(idea 自带) idea 编辑器的主题颜色字体为:(网上下载的 jar 包) 因为今天在安装下面这个主题时需要在 idea的 plugi ...
- Tomcat 基础
一.Tomcat服务器端口的配置 Tomcat的所有配置都放在conf文件夹之中,里面的server.xml文件是配置的核心文件. 如果想修改Tomcat服务器的启动端口,则可以在server.xml ...
- Shuffle Bags让你的随机不那么随机
前言 当我最初写游戏时,我经常使用标准Random()函数,然后写一堆if和else条件来我获得预期结果.如果结果不太好,我会写更多的条件进行过滤或者筛选,直到我觉得游戏变得有趣.最近我发现有更好的方 ...
- mysql批量新增或者更新
1.批量更新或者新增 1.单个新增或者更新 keyProperty新增完之后返回Id值
- SICP读书笔记 2.2
SICP CONCLUSION 让我们举起杯,祝福那些将他们的思想镶嵌在重重括号之间的Lisp程序员 ! 祝我能够突破层层代码,找到住在里计算机的神灵! 目录 1. 构造过程抽象 2. 构造数据抽象 ...