LightOJ 1031 Easy Game (区间DP)
<题目链接>
题目大意:
给定一段序列,两人轮流取数,每人每次只能从序列的两端的任意一段取数,取的数字位置必须连续,个数不限,问你这两人取数的最大差值是多少。
解题分析:
每人取数时面对的局面是一段连续的子序列,我们不妨假设$dp[l][r]$为对于区间$[l,r]$,两人取数的最大差值。因为可能要进行连续区间的转移,所以我们枚举区间之后,还要枚举断点。先预处理出前缀和,对于区间[l,r],dp[l][r]=max(dp[l][r],max((sum[k]-sum[l-1]-dp[k+1][r]),(sum[r]-sum[k]-dp[l][k]))) ,分别表示先手取区间[l,k] 或 [k+1,r] 时,在区间[l,r]中,两人取数差值的最大值。
#include <bits/stdc++.h>
using namespace std; const int N = ;
int n,dp[N][N],arr[N],sum[N]; int main(){
int T,ncase=;scanf("%d",&T);
while(T--){
sum[]=;scanf("%d",&n);
memset(dp,-0x3f,sizeof(dp));
for(int i=;i<=n;i++){
scanf("%d",&arr[i]);
sum[i]=sum[i-]+arr[i];
dp[i][i]=arr[i];
}
for(int len=;len<=n;len++){
for(int l=;l+len-<=n;l++){
int r=l+len-;
dp[l][r]=sum[r]-sum[l-]; //取整个区间的情况,这里不能漏
for(int k=l;k<r;k++){ //因为可以取连续的区间,需要进行区间的转移,所以这里要枚举断点
dp[l][r]=max(dp[l][r],max((sum[k]-sum[l-]-dp[k+][r]),(sum[r]-sum[k]-dp[l][k])));
}//(sum[k]-sum[l-1]-dp[k+1][r])表示:[l,r]中先手取[l,k]时的差值
}
}
printf("Case %d: %d\n",++ncase,dp[][n]);
}
}
LightOJ 1031 Easy Game (区间DP)的更多相关文章
- Light OJ 1031 - Easy Game(区间dp)
题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1031 题目大意:两个选手,轮流可以从数组的任意一端取值, 每次可以去任意个但仅 ...
- LightOJ 1422 Halloween Costumes 区间dp
题意:给你n天需要穿的衣服的样式,每次可以套着穿衣服,脱掉的衣服就不能再穿了,问至少要带多少条衣服才能参加所有宴会 思路:dp[i][j]代表i-j天最少要带的衣服 从后向前dp 区间从大到小 更新d ...
- LightOJ - 1422 Halloween Costumes —— 区间DP
题目链接:https://vjudge.net/problem/LightOJ-1422 1422 - Halloween Costumes PDF (English) Statistics F ...
- Light oj1031 Easy Game (区间dp)
题目链接:http://vjudge.net/contest/140891#problem/F A和B都足够聪明,只有我傻,想了好久才把代码和题意对应上[大哭] 代码: #include<ios ...
- 区间DP小结
也写了好几天的区间DP了,这里稍微总结一下(感觉还是不怎么会啊!). 但是多多少少也有了点感悟: 一.在有了一点思路之后,一定要先确定好dp数组的含义,不要模糊不清地就去写状态转移方程. 二.还么想好 ...
- Light OJ 1031 - Easy Game(区间DP)
题目大意: 给你一个n,代表n个数字,现在有两个选手,选手A,B轮流有有一次机会,每个选手一次可以得到一个或者多个数字,从左侧或者右侧,但是不能同时从两边取数字,当所有的数字被取完,那么游戏结束.然后 ...
- Easy Game LightOJ - 1031
Easy Game LightOJ - 1031 upd:似乎有复杂度更优越的做法,见http://www.cnblogs.com/hehe54321/p/8431020.html 题意:A和B玩一个 ...
- 区间DP LightOJ 1422 Halloween Costumes
http://lightoj.com/volume_showproblem.php?problem=1422 做的第一道区间DP的题目,试水. 参考解题报告: http://www.cnblogs.c ...
- hdu 5693 && LightOj 1422 区间DP
hdu 5693 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5693 等差数列当划分细了后只用比较2个或者3个数就可以了,因为大于3的数都可以由2和3 ...
随机推荐
- nginx日志相关的查询
IP相关统计 统计IP访问量(独立ip访问数量) awk '{print $1}' access.log | sort -n | uniq | wc -l 查看某一时间段的IP访问量(4-5点) gr ...
- 【asp.net】asp.net遍历Request的信息
#需求: 在服务端获取从客户端发送过来的所有数据信息: #方案: 1.服务端代码 public void ProcessRequest(HttpContext context) { //打印所有参数信 ...
- java io系列17之 System.out.println("hello world")原理
我们初学java的第一个程序是"hello world" public class HelloWorld { public static void main(String[] ar ...
- Mac tree命令的使用,输出目录树结构
安装: brew install tree 常用命令: tree --help: 查看帮助信息 tree -d: 只显示文件夹 tree -D: 显示文件的最后修改时间 tree -I no ...
- Entity Framework入门教程(5)---EF中的持久化场景
EF中的持久性场景 使用EF实现实体持久化(保存)到数据库有两种情况:在线场景和离线场景. 1.在线场景 在线场景中,context是同一个上下文实例(从DbContext派生),检索和保存实体都通过 ...
- Windows Server 在IIS上创建安全网站
第一步.打开服务器管理器,创建用户,并设置密码,自己记录下来,注意勾选密码永不过期. 第二步.设置用户隶属组:IIS_IUSRS. 第三步.设置建立的网站文件夹权限,添加刚才建立的用户,并添加修改.读 ...
- [物理学与PDEs]第1章第9节 Darwin 模型 9.3 Darwin 模型
1. $\Omega$ 中 ${\bf A}={\bf A}_T+{\bf A}_L$, 其中 $\Div{\bf A}_T=0$, $\rot{\bf A}_L={\bf 0}$. 若 $$\bex ...
- 支持动态调频_配置AXP228电源管理_4核8核兼容设计_iTOP-4418/6818开发板
iTOP-4418/6818开发板 支持动态调频,AXP228电源管理, 系统支持:Android4.4/5.1.1.Linux3.4.39.QT2.2/4.7/5.7.Ubuntu12.04 内存: ...
- 练习:javascript-setInterval动画运动平移,定时器动画练习
常见问题:定时器加速问题,每次点击会启动一个定时器,解决先清除定时器 <!DOCTYPE html> <html lang="en"> <head&g ...
- shell 批量检测远程端口
[DNyunwei@YZSJHL24-209 li]$ cat port.sh #!/bin/bash # ip=`cat iplist` for i in $ip;do port=`ssh -t $ ...