不想咕太久..就随便找个题更一下

LOJ#6539


题意

求题面里那个式子


题解

有一个常用的小式子

$$\sum_{x|a,x|b}\varphi(x)=\gcd(a,b)$$

用这个式子直接对题面的式子进行化简

$$
\begin{aligned}
&\sum_{i=1}^n\sum_{j=1}^n(a_i,a_j)·(i,j)\\
&=\sum_{i=1}^n\sum_{j=1}^n(\sum_{x|i,x|j}\varphi(x))(a_i,a_j)\\
&=\sum_{x=1}^n\varphi(x)\sum_{x|i}\sum_{x|j}(a_i,a_j)
\end{aligned}
$$

枚举x,相当于求一个大小为$ \frac{n}{x}$的集合内两两$ \gcd$的和

再用一次最上面的式子优化

$$
\begin{aligned}
&\sum_{i=1}^n\sum_{j=1}^n\gcd(a_i,a_j)\\
&=\sum_{d=1}^n\varphi(d)(\sum_{i=1}^n[d|a_i])^2
\end{aligned}
$$

预处理每个数的约数,每次暴力计算

复杂度是对的..跑的飞快...


代码

小范围暴力抢了rk1

#include<ctime>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<vector>
#define rt register int
#define ll long long
using namespace std;
inline ll read(){
ll x=;char zf=;char ch=getchar();
while(ch!='-'&&!isdigit(ch))ch=getchar();
if(ch=='-')zf=-,ch=getchar();
while(isdigit(ch))x=x*+ch-'',ch=getchar();return x*zf;
}
void write(ll y){if(y<)putchar('-'),y=-y;if(y>)write(y/);putchar(y%+);}
void writeln(const ll y){write(y);putchar('\n');}
int k,m,n,x,y,z,cnt,ans;
#define N 100000
bool pri[N+];int ss[N+],phi[N+];
void init(){
phi[]=;
for(rt i=;i<=N;i++){
if(!pri[i]) ss[++cnt]=i,phi[i]=i-;
for(rt j=;j<=cnt&&i*ss[j]<=N;j++){
phi[i*ss[j]]=phi[i]*phi[ss[j]];
pri[i*ss[j]]=;
if(i%ss[j]==){
phi[i*ss[j]]=phi[i]*ss[j];
break;
}
}
}
}
int a[],sum[];
vector<int>ys[];
ll calc2(int x){
ll ret=;
for(rt i=x;i<=n;i+=x)sum[a[i]]++;
for(rt i=;i<=n;i++){
int now=;
for(rt j=i;j<=n;j+=i)now+=sum[j];
ret+=1ll*phi[i]*now*now;
}
for(rt i=x;i<=n;i+=x)sum[a[i]]=;
return ret;
}
ll calc(int x){
ll ret=;
for(rt i=x;i<=n;i+=x){
for(auto j:ys[a[i]]){
ret+=(sum[j]*+)*phi[j];
sum[j]++;
}
}
for(rt i=x;i<=n;i+=x){
for(auto j:ys[a[i]])sum[j]=;
}
return ret;
}
int main(){
init();n=read();
for(rt i=;i<=n;i++)a[i]=read();
for(rt i=;i<=n;i++)
for(rt j=i;j<=n;j+=i)ys[j].push_back(i);
ll ans=;
for(rt x=;x<=n;x++){
if(x<=)ans+=1ll*phi[x]*calc2(x);else
ans+=1ll*phi[x]*calc(x);
}
cout<<ans%;
return ;
}

LOJ #6539 奇妙数论题的更多相关文章

  1. BZOJ 3209: 花神的数论题 [数位DP]

    3209: 花神的数论题 题意:求\(1到n\le 10^{15}\)二进制1的个数的乘积,取模1e7+7 二进制最多50位,我们统计每种1的个数的数的个数,快速幂再乘起来就行了 裸数位DP..\(f ...

  2. FJUT-这还是一道数论题

    这还是一道数论题 TimeLimit:4000MS  MemoryLimit:128MB 64-bit integer IO format:%lld Special Judge   Problem D ...

  3. 【洛谷】4317:花神的数论题【数位DP】

    P4317 花神的数论题 题目背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 题目描述 话说花神这天又来讲课了.课后照例有超级难的神题啦…… 我 ...

  4. 【LG4317】花神的数论题

    [LG4317]花神的数论题 题面 洛谷 题解 设\(f_{i,up,tmp,d}\)表示当前在第\(i\)位,是否卡上界,有\(tmp\)个一,目标是几个一的方案数 最后将所有\(d\)固定,套数位 ...

  5. BZOJ3209 花神的数论题 【组合数学+数位DP+快速幂】*

    BZOJ3209 花神的数论题 Description 背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 描述 话说花神这天又来讲课了.课后照例有 ...

  6. [BZOJ3209]花神的数论题 组合数+快速幂

    3209: 花神的数论题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2498  Solved: 1129[Submit][Status][Disc ...

  7. 【BZOJ3209】花神的数论题 数位DP

    [BZOJ3209]花神的数论题 Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级 ...

  8. 【bzoj3209】: 花神的数论题 数论-DP

    [bzoj3209]: 花神的数论题 首先二进制数中1的个数最多就是64个 设所有<=n的数里二进制中1的个数为i的有a[i]个 那么答案就是  然后快速幂 求a[i]可以用DP 设在二进制中从 ...

  9. bzoj3209:3209: 花神的数论题

    觉得还是数位dp的那种解题形式但是没有认真的想,一下子就看题解.其实还是设置状态转移.一定要多思考啊f[i][j]=f[i-1][j]+g[i-1][j] g[i][j]=f[i-1][j-1]+g[ ...

随机推荐

  1. Flink应用案例:How Trackunit leverages Flink to process real-time data from industrial IoT devices

    January 22, 2019Use Cases, Apache Flink Lasse Nedergaard     Recently there has been significant dis ...

  2. Java获取Linux和Window系统CPU、内存和磁盘总使用率的情况

    这是一个工具类,获取的内容: CPU使用率:得到的是当前CPU的使用情况,这是算出的是两次500毫秒时间差的CPU使用率 内存使用率:[1 -  剩余的物理内存/(总的物理内存+虚拟内存) ] * 1 ...

  3. echarts 配置

    堆叠柱状图, 只要保证 stack 属性相同,就强制画成一列 这就是切割线

  4. Redis的常见用法

    Redis redis是一个key-value存储系统.和Memcached类似,它支持存储的value类型相对更多,包括string(字符串).list(链表).set(集合).zset(sorte ...

  5. windows部署jenkins持续集成maven测试项目不能访问测试报告

    买了一台阿里云的服务器用于练习maven test项目,系统版本wiondows server 2012,将jenkins war包部署在Tomcat服务器上,项目构建后,生成的报告在C:\Windo ...

  6. 二、PHP基本语法 - PHP零基础快速入门

    我们日常生活中,有些人使用普通话交流,有些人使用家乡话.类比到计算机的世界里,PHP 是人与计算机沟通的语言之一. 既然是语言,那就必须遵循一定的语法规则.譬如 A 向 B 表白,A 会对 B 说:& ...

  7. MVC 全局过滤器

    1. 新创建一个类 CheckLogin2. 在类中加入以下代码 public class CheckLogin : ActionFilterAttribute { public override v ...

  8. jexus上部署nuget私服vs访问403错误解决方式

    因为vs去访问nuget项目的时候是以下面的方式去访问的 http://域名/nuget/Search()?$filter=IsLatestVersion&searchTerm=''& ...

  9. 【zabbix教程系列】三、zabbix 3.4 在centos 7 上安装详细步骤

    一.环境准备 [root@ltt01 ~]# ip a : lo: <LOOPBACK,UP,LOWER_UP> mtu qdisc noqueue state UNKNOWN qlen ...

  10. nginx 返回json格式内容

    例子: #如果访问的ip是192.168.1.1,就直接返回json格式的内容 location / { default_type application/json; #####格式 if ( $re ...