文本分类实战(四)—— Bi-LSTM模型
1 大纲概述
文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类。总共有以下系列:
jupyter notebook代码均在textClassifier仓库中,python代码在NLP-Project中的text_classfier中。
2 数据集
数据集为IMDB 电影影评,总共有三个数据文件,在/data/rawData目录下,包括unlabeledTrainData.tsv,labeledTrainData.tsv,testData.tsv。在进行文本分类时需要有标签的数据(labeledTrainData),数据预处理如文本分类实战(一)—— word2vec预训练词向量中一样,预处理后的文件为/data/preprocess/labeledTrain.csv。
3 Bi-LSTM模型结构
Bi-LSTM即双向LSTM,较单向的LSTM,Bi-LSTM能更好地捕获句子中上下文的信息。LSTM的介绍见这篇。在本次实战中采用双层的Bi-LSTM结构来进行文本分类。
4 配置参数
import os
import csv
import time
import datetime
import random
import json import warnings
from collections import Counter
from math import sqrt import gensim
import pandas as pd
import numpy as np
import tensorflow as tf
from sklearn.metrics import roc_auc_score, accuracy_score, precision_score, recall_score
warnings.filterwarnings("ignore")
# 配置参数 class TrainingConfig(object):
epoches = 10
evaluateEvery = 100
checkpointEvery = 100
learningRate = 0.001 class ModelConfig(object):
embeddingSize = 200 hiddenSizes = [256, 256] # 单层LSTM结构的神经元个数 dropoutKeepProb = 0.5
l2RegLambda = 0.0 class Config(object):
sequenceLength = 200 # 取了所有序列长度的均值
batchSize = 128 dataSource = "../data/preProcess/labeledTrain.csv" stopWordSource = "../data/english" numClasses = 1 # 二分类设置为1,多分类设置为类别的数目 rate = 0.8 # 训练集的比例 training = TrainingConfig() model = ModelConfig() # 实例化配置参数对象
config = Config()
5 生成训练数据
1)将数据加载进来,将句子分割成词表示,并去除低频词和停用词。
2)将词映射成索引表示,构建词汇-索引映射表,并保存成json的数据格式,之后做inference时可以用到。(注意,有的词可能不在word2vec的预训练词向量中,这种词直接用UNK表示)
3)从预训练的词向量模型中读取出词向量,作为初始化值输入到模型中。
4)将数据集分割成训练集和测试集
# 数据预处理的类,生成训练集和测试集 class Dataset(object):
def __init__(self, config):
self.config = config
self._dataSource = config.dataSource
self._stopWordSource = config.stopWordSource self._sequenceLength = config.sequenceLength # 每条输入的序列处理为定长
self._embeddingSize = config.model.embeddingSize
self._batchSize = config.batchSize
self._rate = config.rate self._stopWordDict = {} self.trainReviews = []
self.trainLabels = [] self.evalReviews = []
self.evalLabels = [] self.wordEmbedding =None self.labelList = [] def _readData(self, filePath):
"""
从csv文件中读取数据集
""" df = pd.read_csv(filePath) if self.config.numClasses == 1:
labels = df["sentiment"].tolist()
elif self.config.numClasses > 1:
labels = df["rate"].tolist() review = df["review"].tolist()
reviews = [line.strip().split() for line in review] return reviews, labels def _labelToIndex(self, labels, label2idx):
"""
将标签转换成索引表示
"""
labelIds = [label2idx[label] for label in labels]
return labelIds def _wordToIndex(self, reviews, word2idx):
"""
将词转换成索引
"""
reviewIds = [[word2idx.get(item, word2idx["UNK"]) for item in review] for review in reviews]
return reviewIds def _genTrainEvalData(self, x, y, word2idx, rate):
"""
生成训练集和验证集
"""
reviews = []
for review in x:
if len(review) >= self._sequenceLength:
reviews.append(review[:self._sequenceLength])
else:
reviews.append(review + [word2idx["PAD"]] * (self._sequenceLength - len(review))) trainIndex = int(len(x) * rate) trainReviews = np.asarray(reviews[:trainIndex], dtype="int64")
trainLabels = np.array(y[:trainIndex], dtype="float32") evalReviews = np.asarray(reviews[trainIndex:], dtype="int64")
evalLabels = np.array(y[trainIndex:], dtype="float32") return trainReviews, trainLabels, evalReviews, evalLabels def _genVocabulary(self, reviews, labels):
"""
生成词向量和词汇-索引映射字典,可以用全数据集
""" allWords = [word for review in reviews for word in review] # 去掉停用词
subWords = [word for word in allWords if word not in self.stopWordDict] wordCount = Counter(subWords) # 统计词频
sortWordCount = sorted(wordCount.items(), key=lambda x: x[1], reverse=True) # 去除低频词
words = [item[0] for item in sortWordCount if item[1] >= 5] vocab, wordEmbedding = self._getWordEmbedding(words)
self.wordEmbedding = wordEmbedding word2idx = dict(zip(vocab, list(range(len(vocab))))) uniqueLabel = list(set(labels))
label2idx = dict(zip(uniqueLabel, list(range(len(uniqueLabel)))))
self.labelList = list(range(len(uniqueLabel))) # 将词汇-索引映射表保存为json数据,之后做inference时直接加载来处理数据
with open("../data/wordJson/word2idx.json", "w", encoding="utf-8") as f:
json.dump(word2idx, f) with open("../data/wordJson/label2idx.json", "w", encoding="utf-8") as f:
json.dump(label2idx, f) return word2idx, label2idx def _getWordEmbedding(self, words):
"""
按照我们的数据集中的单词取出预训练好的word2vec中的词向量
""" wordVec = gensim.models.KeyedVectors.load_word2vec_format("../word2vec/word2Vec.bin", binary=True)
vocab = []
wordEmbedding = [] # 添加 "pad" 和 "UNK",
vocab.append("PAD")
vocab.append("UNK")
wordEmbedding.append(np.zeros(self._embeddingSize))
wordEmbedding.append(np.random.randn(self._embeddingSize)) for word in words:
try:
vector = wordVec.wv[word]
vocab.append(word)
wordEmbedding.append(vector)
except:
print(word + "不存在于词向量中") return vocab, np.array(wordEmbedding) def _readStopWord(self, stopWordPath):
"""
读取停用词
""" with open(stopWordPath, "r") as f:
stopWords = f.read()
stopWordList = stopWords.splitlines()
# 将停用词用列表的形式生成,之后查找停用词时会比较快
self.stopWordDict = dict(zip(stopWordList, list(range(len(stopWordList))))) def dataGen(self):
"""
初始化训练集和验证集
""" # 初始化停用词
self._readStopWord(self._stopWordSource) # 初始化数据集
reviews, labels = self._readData(self._dataSource) # 初始化词汇-索引映射表和词向量矩阵
word2idx, label2idx = self._genVocabulary(reviews, labels) # 将标签和句子数值化
labelIds = self._labelToIndex(labels, label2idx)
reviewIds = self._wordToIndex(reviews, word2idx) # 初始化训练集和测试集
trainReviews, trainLabels, evalReviews, evalLabels = self._genTrainEvalData(reviewIds, labelIds, word2idx, self._rate)
self.trainReviews = trainReviews
self.trainLabels = trainLabels self.evalReviews = evalReviews
self.evalLabels = evalLabels data = Dataset(config)
data.dataGen()
6 生成batch数据集
采用生成器的形式向模型输入batch数据集,(生成器可以避免将所有的数据加入到内存中)
# 输出batch数据集 def nextBatch(x, y, batchSize):
"""
生成batch数据集,用生成器的方式输出
""" perm = np.arange(len(x))
np.random.shuffle(perm)
x = x[perm]
y = y[perm] numBatches = len(x) // batchSize for i in range(numBatches):
start = i * batchSize
end = start + batchSize
batchX = np.array(x[start: end], dtype="int64")
batchY = np.array(y[start: end], dtype="float32") yield batchX, batchY
7 Bi-LSTM模型
# 构建模型
class BiLSTM(object):
"""
Bi-LSTM 用于文本分类
"""
def __init__(self, config, wordEmbedding): # 定义模型的输入
self.inputX = tf.placeholder(tf.int32, [None, config.sequenceLength], name="inputX")
self.inputY = tf.placeholder(tf.int32, [None], name="inputY") self.dropoutKeepProb = tf.placeholder(tf.float32, name="dropoutKeepProb") # 定义l2损失
l2Loss = tf.constant(0.0) # 词嵌入层
with tf.name_scope("embedding"): # 利用预训练的词向量初始化词嵌入矩阵
self.W = tf.Variable(tf.cast(wordEmbedding, dtype=tf.float32, name="word2vec") ,name="W")
# 利用词嵌入矩阵将输入的数据中的词转换成词向量,维度[batch_size, sequence_length, embedding_size]
self.embeddedWords = tf.nn.embedding_lookup(self.W, self.inputX) # 定义两层双向LSTM的模型结构
with tf.name_scope("Bi-LSTM"): for idx, hiddenSize in enumerate(config.model.hiddenSizes):
with tf.name_scope("Bi-LSTM" + str(idx)):
# 定义前向LSTM结构
lstmFwCell = tf.nn.rnn_cell.DropoutWrapper(tf.nn.rnn_cell.LSTMCell(num_units=hiddenSize, state_is_tuple=True),
output_keep_prob=self.dropoutKeepProb)
# 定义反向LSTM结构
lstmBwCell = tf.nn.rnn_cell.DropoutWrapper(tf.nn.rnn_cell.LSTMCell(num_units=hiddenSize, state_is_tuple=True),
output_keep_prob=self.dropoutKeepProb) # 采用动态rnn,可以动态的输入序列的长度,若没有输入,则取序列的全长
# outputs是一个元祖(output_fw, output_bw),其中两个元素的维度都是[batch_size, max_time, hidden_size],fw和bw的hidden_size一样
# self.current_state 是最终的状态,二元组(state_fw, state_bw),state_fw=[batch_size, s],s是一个元祖(h, c)
outputs, self.current_state = tf.nn.bidirectional_dynamic_rnn(lstmFwCell, lstmBwCell,
self.embeddedWords, dtype=tf.float32,
scope="bi-lstm" + str(idx)) # 对outputs中的fw和bw的结果拼接 [batch_size, time_step, hidden_size * 2]
self.embeddedWords = tf.concat(outputs, 2) # 去除最后时间步的输出作为全连接的输入
finalOutput = self.embeddedWords[:, 0, :] outputSize = config.model.hiddenSizes[-1] * 2 # 因为是双向LSTM,最终的输出值是fw和bw的拼接,因此要乘以2
output = tf.reshape(finalOutput, [-1, outputSize]) # reshape成全连接层的输入维度 # 全连接层的输出
with tf.name_scope("output"):
outputW = tf.get_variable(
"outputW",
shape=[outputSize, config.numClasses],
initializer=tf.contrib.layers.xavier_initializer()) outputB= tf.Variable(tf.constant(0.1, shape=[config.numClasses]), name="outputB")
l2Loss += tf.nn.l2_loss(outputW)
l2Loss += tf.nn.l2_loss(outputB)
self.logits = tf.nn.xw_plus_b(output, outputW, outputB, name="logits")
if config.numClasses == 1:
self.predictions = tf.cast(tf.greater_equal(self.logits, 0.0), tf.float32, name="predictions")
elif config.numClasses > 1:
self.predictions = tf.argmax(self.logits, axis=-1, name="predictions") # 计算二元交叉熵损失
with tf.name_scope("loss"): if config.numClasses == 1:
losses = tf.nn.sigmoid_cross_entropy_with_logits(logits=self.logits, labels=tf.cast(tf.reshape(self.inputY, [-1, 1]),
dtype=tf.float32))
elif config.numClasses > 1:
losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.logits, labels=self.inputY) self.loss = tf.reduce_mean(losses) + config.model.l2RegLambda * l2Loss
8 定义计算metrics的函数
"""
定义各类性能指标
""" def mean(item: list) -> float:
"""
计算列表中元素的平均值
:param item: 列表对象
:return:
"""
res = sum(item) / len(item) if len(item) > 0 else 0
return res def accuracy(pred_y, true_y):
"""
计算二类和多类的准确率
:param pred_y: 预测结果
:param true_y: 真实结果
:return:
"""
if isinstance(pred_y[0], list):
pred_y = [item[0] for item in pred_y]
corr = 0
for i in range(len(pred_y)):
if pred_y[i] == true_y[i]:
corr += 1
acc = corr / len(pred_y) if len(pred_y) > 0 else 0
return acc def binary_precision(pred_y, true_y, positive=1):
"""
二类的精确率计算
:param pred_y: 预测结果
:param true_y: 真实结果
:param positive: 正例的索引表示
:return:
"""
corr = 0
pred_corr = 0
for i in range(len(pred_y)):
if pred_y[i] == positive:
pred_corr += 1
if pred_y[i] == true_y[i]:
corr += 1 prec = corr / pred_corr if pred_corr > 0 else 0
return prec def binary_recall(pred_y, true_y, positive=1):
"""
二类的召回率
:param pred_y: 预测结果
:param true_y: 真实结果
:param positive: 正例的索引表示
:return:
"""
corr = 0
true_corr = 0
for i in range(len(pred_y)):
if true_y[i] == positive:
true_corr += 1
if pred_y[i] == true_y[i]:
corr += 1 rec = corr / true_corr if true_corr > 0 else 0
return rec def binary_f_beta(pred_y, true_y, beta=1.0, positive=1):
"""
二类的f beta值
:param pred_y: 预测结果
:param true_y: 真实结果
:param beta: beta值
:param positive: 正例的索引表示
:return:
"""
precision = binary_precision(pred_y, true_y, positive)
recall = binary_recall(pred_y, true_y, positive)
try:
f_b = (1 + beta * beta) * precision * recall / (beta * beta * precision + recall)
except:
f_b = 0
return f_b def multi_precision(pred_y, true_y, labels):
"""
多类的精确率
:param pred_y: 预测结果
:param true_y: 真实结果
:param labels: 标签列表
:return:
"""
if isinstance(pred_y[0], list):
pred_y = [item[0] for item in pred_y] precisions = [binary_precision(pred_y, true_y, label) for label in labels]
prec = mean(precisions)
return prec def multi_recall(pred_y, true_y, labels):
"""
多类的召回率
:param pred_y: 预测结果
:param true_y: 真实结果
:param labels: 标签列表
:return:
"""
if isinstance(pred_y[0], list):
pred_y = [item[0] for item in pred_y] recalls = [binary_recall(pred_y, true_y, label) for label in labels]
rec = mean(recalls)
return rec def multi_f_beta(pred_y, true_y, labels, beta=1.0):
"""
多类的f beta值
:param pred_y: 预测结果
:param true_y: 真实结果
:param labels: 标签列表
:param beta: beta值
:return:
"""
if isinstance(pred_y[0], list):
pred_y = [item[0] for item in pred_y] f_betas = [binary_f_beta(pred_y, true_y, beta, label) for label in labels]
f_beta = mean(f_betas)
return f_beta def get_binary_metrics(pred_y, true_y, f_beta=1.0):
"""
得到二分类的性能指标
:param pred_y:
:param true_y:
:param f_beta:
:return:
"""
acc = accuracy(pred_y, true_y)
recall = binary_recall(pred_y, true_y)
precision = binary_precision(pred_y, true_y)
f_beta = binary_f_beta(pred_y, true_y, f_beta)
return acc, recall, precision, f_beta def get_multi_metrics(pred_y, true_y, labels, f_beta=1.0):
"""
得到多分类的性能指标
:param pred_y:
:param true_y:
:param labels:
:param f_beta:
:return:
"""
acc = accuracy(pred_y, true_y)
recall = multi_recall(pred_y, true_y, labels)
precision = multi_precision(pred_y, true_y, labels)
f_beta = multi_f_beta(pred_y, true_y, labels, f_beta)
return acc, recall, precision, f_beta
9 训练模型
在训练时,我们定义了tensorBoard的输出,并定义了两种模型保存的方法。
# 训练模型 # 生成训练集和验证集
trainReviews = data.trainReviews
trainLabels = data.trainLabels
evalReviews = data.evalReviews
evalLabels = data.evalLabels wordEmbedding = data.wordEmbedding
labelList = data.labelList # 定义计算图
with tf.Graph().as_default(): session_conf = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)
session_conf.gpu_options.allow_growth=True
session_conf.gpu_options.per_process_gpu_memory_fraction = 0.9 # 配置gpu占用率 sess = tf.Session(config=session_conf) # 定义会话
with sess.as_default():
lstm = BiLSTM(config, wordEmbedding) globalStep = tf.Variable(0, name="globalStep", trainable=False)
# 定义优化函数,传入学习速率参数
optimizer = tf.train.AdamOptimizer(config.training.learningRate)
# 计算梯度,得到梯度和变量
gradsAndVars = optimizer.compute_gradients(lstm.loss)
# 将梯度应用到变量下,生成训练器
trainOp = optimizer.apply_gradients(gradsAndVars, global_step=globalStep) # 用summary绘制tensorBoard
gradSummaries = []
for g, v in gradsAndVars:
if g is not None:
tf.summary.histogram("{}/grad/hist".format(v.name), g)
tf.summary.scalar("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g)) outDir = os.path.abspath(os.path.join(os.path.curdir, "summarys"))
print("Writing to {}\n".format(outDir)) lossSummary = tf.summary.scalar("loss", lstm.loss)
summaryOp = tf.summary.merge_all() trainSummaryDir = os.path.join(outDir, "train")
trainSummaryWriter = tf.summary.FileWriter(trainSummaryDir, sess.graph) evalSummaryDir = os.path.join(outDir, "eval")
evalSummaryWriter = tf.summary.FileWriter(evalSummaryDir, sess.graph) # 初始化所有变量
saver = tf.train.Saver(tf.global_variables(), max_to_keep=5) # 保存模型的一种方式,保存为pb文件
savedModelPath = "../model/Bi-LSTM/savedModel"
if os.path.exists(savedModelPath):
os.rmdir(savedModelPath)
builder = tf.saved_model.builder.SavedModelBuilder(savedModelPath) sess.run(tf.global_variables_initializer()) def trainStep(batchX, batchY):
"""
训练函数
"""
feed_dict = {
lstm.inputX: batchX,
lstm.inputY: batchY,
lstm.dropoutKeepProb: config.model.dropoutKeepProb
}
_, summary, step, loss, predictions = sess.run(
[trainOp, summaryOp, globalStep, lstm.loss, lstm.predictions],
feed_dict) timeStr = datetime.datetime.now().isoformat() if config.numClasses == 1:
acc, recall, prec, f_beta = get_binary_metrics(pred_y=predictions, true_y=batchY) elif config.numClasses > 1:
acc, recall, prec, f_beta = get_multi_metrics(pred_y=predictions, true_y=batchY,
labels=labelList) trainSummaryWriter.add_summary(summary, step) return loss, acc, prec, recall, f_beta def devStep(batchX, batchY):
"""
验证函数
"""
feed_dict = {
lstm.inputX: batchX,
lstm.inputY: batchY,
lstm.dropoutKeepProb: 1.0
}
summary, step, loss, predictions = sess.run(
[summaryOp, globalStep, lstm.loss, lstm.predictions],
feed_dict) if config.numClasses == 1: acc, precision, recall, f_beta = get_binary_metrics(pred_y=predictions, true_y=batchY)
elif config.numClasses > 1:
acc, precision, recall, f_beta = get_multi_metrics(pred_y=predictions, true_y=batchY, labels=labelList) evalSummaryWriter.add_summary(summary, step) return loss, acc, precision, recall, f_beta for i in range(config.training.epoches):
# 训练模型
print("start training model")
for batchTrain in nextBatch(trainReviews, trainLabels, config.batchSize):
loss, acc, prec, recall, f_beta = trainStep(batchTrain[0], batchTrain[1]) currentStep = tf.train.global_step(sess, globalStep)
print("train: step: {}, loss: {}, acc: {}, recall: {}, precision: {}, f_beta: {}".format(
currentStep, loss, acc, recall, prec, f_beta))
if currentStep % config.training.evaluateEvery == 0:
print("\nEvaluation:") losses = []
accs = []
f_betas = []
precisions = []
recalls = [] for batchEval in nextBatch(evalReviews, evalLabels, config.batchSize):
loss, acc, precision, recall, f_beta = devStep(batchEval[0], batchEval[1])
losses.append(loss)
accs.append(acc)
f_betas.append(f_beta)
precisions.append(precision)
recalls.append(recall) time_str = datetime.datetime.now().isoformat()
print("{}, step: {}, loss: {}, acc: {},precision: {}, recall: {}, f_beta: {}".format(time_str, currentStep, mean(losses),
mean(accs), mean(precisions),
mean(recalls), mean(f_betas))) if currentStep % config.training.checkpointEvery == 0:
# 保存模型的另一种方法,保存checkpoint文件
path = saver.save(sess, "../model/Bi-LSTM/model/my-model", global_step=currentStep)
print("Saved model checkpoint to {}\n".format(path)) inputs = {"inputX": tf.saved_model.utils.build_tensor_info(lstm.inputX),
"keepProb": tf.saved_model.utils.build_tensor_info(lstm.dropoutKeepProb)} outputs = {"predictions": tf.saved_model.utils.build_tensor_info(lstm.binaryPreds)} prediction_signature = tf.saved_model.signature_def_utils.build_signature_def(inputs=inputs, outputs=outputs,
method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME)
legacy_init_op = tf.group(tf.tables_initializer(), name="legacy_init_op")
builder.add_meta_graph_and_variables(sess, [tf.saved_model.tag_constants.SERVING],
signature_def_map={"predict": prediction_signature}, legacy_init_op=legacy_init_op) builder.save()
10 预测代码
x = "this movie is full of references like mad max ii the wild one and many others the ladybug´s face it´s a clear reference or tribute to peter lorre this movie is a masterpiece we´ll talk much more about in the future" # 注:下面两个词典要保证和当前加载的模型对应的词典是一致的
with open("../data/wordJson/word2idx.json", "r", encoding="utf-8") as f:
word2idx = json.load(f) with open("../data/wordJson/label2idx.json", "r", encoding="utf-8") as f:
label2idx = json.load(f)
idx2label = {value: key for key, value in label2idx.items()} xIds = [word2idx.get(item, word2idx["UNK"]) for item in x.split(" ")]
if len(xIds) >= config.sequenceLength:
xIds = xIds[:config.sequenceLength]
else:
xIds = xIds + [word2idx["PAD"]] * (config.sequenceLength - len(xIds)) graph = tf.Graph()
with graph.as_default():
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333)
session_conf = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False, gpu_options=gpu_options)
sess = tf.Session(config=session_conf) with sess.as_default():
checkpoint_file = tf.train.latest_checkpoint("../model/Bi-LSTM/model/")
saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))
saver.restore(sess, checkpoint_file) # 获得需要喂给模型的参数,输出的结果依赖的输入值
inputX = graph.get_operation_by_name("inputX").outputs[0]
dropoutKeepProb = graph.get_operation_by_name("dropoutKeepProb").outputs[0] # 获得输出的结果
predictions = graph.get_tensor_by_name("output/predictions:0") pred = sess.run(predictions, feed_dict={inputX: [xIds], dropoutKeepProb: 1.0})[0] pred = [idx2label[item] for item in pred]
print(pred)
文本分类实战(四)—— Bi-LSTM模型的更多相关文章
- 文本分类实战(七)—— Adversarial LSTM模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 文本分类实战(八)—— Transformer模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 文本分类实战(六)—— RCNN模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 文本分类实战(五)—— Bi-LSTM + Attention模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 文本分类实战(三)—— charCNN模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 文本分类实战(二)—— textCNN 模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 基于Text-CNN模型的中文文本分类实战 流川枫 发表于AI星球订阅
Text-CNN 1.文本分类 转眼学生生涯就结束了,在家待就业期间正好有一段空闲期,可以对曾经感兴趣的一些知识点进行总结. 本文介绍NLP中文本分类任务中核心流程进行了系统的介绍,文末给出一个基于T ...
- 基于Text-CNN模型的中文文本分类实战
Text-CNN 1.文本分类 转眼学生生涯就结束了,在家待就业期间正好有一段空闲期,可以对曾经感兴趣的一些知识点进行总结. 本文介绍NLP中文本分类任务中核心流程进行了系统的介绍,文末给出一个基于T ...
- 文本分类实战(十)—— BERT 预训练模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
随机推荐
- leetcode — remove-duplicates-from-sorted-list
/** * Source : https://oj.leetcode.com/problems/remove-duplicates-from-sorted-list/ * * * Given a so ...
- 【Java并发编程】Callable、Future和FutureTask的实现
启动线程执行任务,如果需要在任务执行完毕之后得到任务执行结果,可以使用从Java 1.5开始提供的Callable和Future 下面就分析一下Callable.Future以及FutureTask的 ...
- Spring Cloud Alibaba基础教程:Nacos配置的多文件加载与共享配置
前情回顾: <Spring Cloud Alibaba基础教程:使用Nacos实现服务注册与发现> <Spring Cloud Alibaba基础教程:支持的几种服务消费方式> ...
- 第六讲 smart qq C#开发总结
smart qqC#开发总结: 整个开发下来其实一点都不是很难,从一开始二维码 获取到最终的收发消息,基本上都是模拟浏览器的操作.都是基于http通讯.一下就是 本次新手学习http协议的最关键的一个 ...
- [android]android项目的目录结构
/**************2016年4月23更新*********************/ 相关技术: 知乎:用eclipse做Android开发,新建工程时应如何选择Android的版本? 肥 ...
- Spring(二)继承jdbcDaoSupport的方式实现(增删改查)
一 首先创建数据库表和相应的字段,并创建约束 二 建立项目,导入jar包(ioc,aop,dao,数据库驱动,连接池)并且将applicationContext.xml文件放在src下 三 开启组件扫 ...
- Java自学总结--简介
学习Java一年多了,练习了很多,这条路真的很难走.还有半年多毕业的我整理整理所学习的笔记给大家分享主要也是让自己记忆加深.自学时用到的时阿发老师的教学视频,通俗易懂还有题库可以练习.最经典的就是阿发 ...
- vue 中引用jquery
1.安装jquery npm install jquery --save-dev 2.打开配置文件webpack.base.conf.js 加入'jquery': path.resolve(__dir ...
- 彻底关闭Excle进程的几个方法
之前研究过的问题,最近有朋友问,这里再总结下做一个笔记. 我们在应用程序里面通过创建Excle应用对象打开Excle的情况下,如果不注意几个问题,可能无法彻底关闭Excle进程,来考察下面的几种情况: ...
- C#:在匿名方法中捕获外部变量
先来一段代码引入主题.如果你可以直接说出代码的输出结果,说明本文不适合你.(代码引自<深入理解C#>第三版) class Program { private delegate void T ...