kafka consumer 配置详解
1、Consumer Group 与 topic 订阅
每个Consumer 进程都会划归到一个逻辑的Consumer Group中,逻辑的订阅者是Consumer Group。所以一条message可以被多个订阅message 所在的topic的每一个Consumer Group,也就好像是这条message被广播到每个Consumer Group一样。而每个Consumer Group中,类似于一个Queue(JMS中的Queue)的概念差不多,即一条消息只会被Consumer Group中的一个Consumer消费。
1.1 Consumer 与 partition
其实上面所说的订阅关系还不够明确,其实topic中的partition被分配到某个consumer上,也就是某个consumer订阅了某个partition。 再重复一下:consumer订阅的是partition,而不是message。所以在同一时间点上,订阅到同一个partition的consumer必然属于不同的Consumer Group。
在官方网站上,给出了这样一张图:
一个kafka cluster中的某个topic,有4个partition。有两个consumer group (A and B)订阅了该topic。 Consumer Group A有2个partition:p0、p1,Consumer Group B有4个partition:c3,c4,c5,c6。经过分区分配后,consumer与partition的订阅关系如下:
Topic 中的4个partition在Consumer Group A中的分配情况如下:
C1 订阅p0,p3
C2 订阅p1,p2
Topic 中的4个partition在Consumer Group B中的分配情况如下:
C3 订阅p0
C4 订阅p3
C5 订阅p1
C6 订阅p2
另外要知道的是,partition分配的工作其实是在consumer leader中完成的。
1.2 Consumer 与Consumer Group
Consumer Group与Consumer的关系是动态维护的:
当一个Consumer 进程挂掉 或者是卡住时,该consumer所订阅的partition会被重新分配到该group内的其它的consumer上。当一个consumer加入到一个consumer group中时,同样会从其它的consumer中分配出一个或者多个partition 到这个新加入的consumer。
当启动一个Consumer时,会指定它要加入的group,使用的是配置项:group.id。
为了维持Consumer 与 Consumer Group的关系,需要Consumer周期性的发送heartbeat到coordinator(协调者,在早期版本,以zookeeper作为协调者。后期版本则以某个broker作为协调者)。当Consumer由于某种原因不能发Heartbeat到coordinator时,并且时间超过session.timeout.ms时,就会认为该consumer已退出,它所订阅的partition会分配到同一group 内的其它的consumer上。而这个过程,被称为rebalance。
那么现在有这样一个问题:如果一个consumer 进程一直在周期性的发送heartbeat,但是它就是不消费消息,这种状态称为livelock状态。那么在这种状态下,它所订阅的partition不消息是否就一直不能被消费呢?
1.3 Coordinator
Coordinator 协调者,协调consumer、broker。早期版本中Coordinator,使用zookeeper实现,但是这样做,rebalance的负担太重。为了解决scalable的问题,不再使用zookeeper,而是让每个broker来负责一些group的管理,这样consumer就完全不再依赖zookeeper了。
1.3.1 Consumer连接到coordinator
从Consumer的实现来看,在执行poll或者是join group之前,都要保证已连接到Coordinator。连接到coordinator的过程是:
1)连接到最后一次连接的broker(如果是刚启动的consumer,则要根据配置中的borker)。它会响应一个包含coordinator信息(host, port等)的response。
2)连接到coordinator。
1.4 Consumer Group Management
Consumer Group 管理中,也是需要coordinator的参与。一个Consumer要join到一个group中,或者一个consumer退出时,都要进行rebalance。进行rebalance的流程是:
1)会给一个coordinator发起Join请求(请求中要包括自己的一些元数据,例如自己感兴趣的topics)
2)Coordinator 根据这些consumer的join请求,选择出一个leader,并通知给各个consumer。这里的leader是consumer group 内的leader,是由某个consumer担任,不要与partition的leader混淆。
3)Consumer leader 根据这些consumer的metadata,重新为每个consumer member重新分配partition。分配完毕通过coordinator把最新分配情况同步给每个consumer。
4)Consumer拿到最新的分配后,继续工作。
2、Consumer Fetch Message
在Kafka partition中,每个消息有一个唯一标识,即partition内的offset。每个consumer group中的订阅到某个partition的consumer在从partition中读取数据时,是依次读取的。
上图中,Consumer A、B分属于不用的Consumer Group。Consumer B读取到offset =11,Consumer A读取到offset=9 。这个值表示Consumer Group中的某个Consumer 在下次读取该partition时会从哪个offset的 message开始读取,即 Consumer Group A 中的Consumer下次会从offset = 9 的message 读取, Consumer Group B 中的Consumer下次会从offset = 11 的message 读取。
这里并没有说是Consumer A 下次会从offset = 9 的message读取,原因是Consumer A可能会退出Group ,然后Group A 进行rebalance,即重新分配分区。
2.1 poll 方法
Consumer读取partition中的数据是通过调用发起一个fetch请求来执行的。而从KafkaConsumer来看,它有一个poll方法。但是这个poll方法只是可能会发起fetch请求。原因是:Consumer每次发起fetch请求时,读取到的数据是有限制的,通过配置项max.partition.fetch.bytes来限制的。而在执行poll方法时,会根据配置项个max.poll.records来限制一次最多pool多少个record。
那么就可能出现这样的情况: 在满足max.partition.fetch.bytes限制的情况下,假如fetch到了100个record,放到本地缓存后,由于max.poll.records限制每次只能poll出15个record。那么KafkaConsumer就需要执行7次才能将这一次通过网络发起的fetch请求所fetch到的这100个record消费完毕。其中前6次是每次pool中15个record,最后一次是poll出10个record。
在consumer中,还有另外一个配置项:max.poll.interval.ms ,它表示最大的poll数据间隔,如果超过这个间隔没有发起pool请求,但heartbeat仍旧在发,就认为该consumer处于 livelock状态。就会将该consumer退出consumer group。所以为了不使Consumer 自己被退出,Consumer 应该不停的发起poll(timeout)操作。而这个动作 KafkaConsumer Client是不会帮我们做的,这就需要自己在程序中不停的调用poll方法了。
2.2 commit offset
当一个consumer因某种原因退出Group时,进行重新分配partition后,同一group中的另一个consumer在读取该partition时,怎么能够知道上一个consumer该从哪个offset的message读取呢?也是是如何保证同一个group内的consumer不重复消费消息呢?上面说了一次走网络的fetch请求会拉取到一定量的数据,但是这些数据还没有被消息完毕,Consumer就挂掉了,下一次进行数据fetch时,是否会从上次读到的数据开始读取,而导致Consumer消费的数据丢失吗?
为了做到这一点,当使用完poll从本地缓存拉取到数据之后,需要client调用commitSync方法(或者commitAsync方法)去commit 下一次该去读取 哪一个offset的message。
而这个commit方法会通过走网络的commit请求将offset在coordinator中保留,这样就能够保证下一次读取(不论进行了rebalance)时,既不会重复消费消息,也不会遗漏消息。
对于offset的commit,Kafka Consumer Java Client支持两种模式:由KafkaConsumer自动提交,或者是用户通过调用commitSync、commitAsync方法的方式完成offset的提交。
自动提交的例子:
Properties props = new Properties(); props.put("bootstrap.servers", "localhost:9092"); props.put("group.id", "test"); props.put("enable.auto.commit", "true"); props.put("auto.commit.interval.ms", "1000"); props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props); consumer.subscribe(Arrays.asList("foo", "bar")); while (true) { ConsumerRecords<String, String> records = consumer.poll(100); for (ConsumerRecord<String, String> record : records) System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value()); }
手动提交的例子:
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("group.id", "test");
props.put("enable.auto.commit", "false");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
consumer.subscribe(Arrays.asList("foo", "bar"));
final int minBatchSize = 200;
List<ConsumerRecord<String, String>> buffer = new ArrayList<>();
while (true) {
ConsumerRecords<String, String> records = consumer.poll(100);
for (ConsumerRecord<String, String> record : records) {
buffer.add(record);
}
if (buffer.size() >= minBatchSize) {
insertIntoDb(buffer);
consumer.commitSync();
buffer.clear();
}
}
在手动提交时,需要注意的一点是:要提交的是下一次要读取的offset,例如:
try {
while(running) {
// 取得消息
ConsumerRecords<String, String> records = consumer.poll(Long.MAX_VALUE);
// 根据分区来遍历数据:
for (TopicPartition partition : records.partitions()) {
List<ConsumerRecord<String, String>> partitionRecords = records.records(partition);
// 数据处理
for (ConsumerRecord<String, String> record : partitionRecords) {
System.out.println(record.offset() + ": " + record.value());
}
// 取得当前读取到的最后一条记录的offset
long lastOffset = partitionRecords.get(partitionRecords.size() - 1).offset();
// 提交offset,记得要 + 1
consumer.commitSync(Collections.singletonMap(partition, new OffsetAndMetadata(lastOffset + 1)));
}
}
} finally {
consumer.close();
}
3、Consumer的线程安全性
KafkaProducer是线程安全的,上一节已经了解到。但Consumer却没有设计成线程安全的。当用户想要在在多线程环境下使用kafkaConsumer时,需要自己来保证synchronized。如果没有这样的保证,就会抛出ConcurrentModificatinException的。
当你想要关闭Consumer或者为也其它的目的想要中断Consumer的处理时,可以调用consumer的wakeup方法。这个方法会抛出WakeupException。
例如:
public class KafkaConsumerRunner implements Runnable {
private final AtomicBoolean closed = new AtomicBoolean(false);
private final KafkaConsumer consumer; public void run() {
try {
consumer.subscribe(Arrays.asList("topic"));
while (!closed.get()) {
ConsumerRecords records = consumer.poll(10000);
// Handle new records
}
} catch (WakeupException e) {
// Ignore exception if closing
if (!closed.get()) throw e;
} finally {
consumer.close();
}
} // Shutdown hook which can be called from a separate thread
public void shutdown() {
closed.set(true);
consumer.wakeup();
}
}
4、Consumer Configuration
在kafka 0.9+使用Java Consumer替代了老版本的scala Consumer。新版的配置如下:
·bootstrap.servers
在启动consumer时配置的broker地址的。不需要将cluster中所有的broker都配置上,因为启动后会自动的发现cluster所有的broker。
它配置的格式是:host1:port1;host2:port2…
·key.descrializer、value.descrializer
Message record 的key, value的反序列化类。
·group.id
用于表示该consumer想要加入到哪个group中。默认值是 “”。
·heartbeat.interval.ms
心跳间隔。心跳是在consumer与coordinator之间进行的。心跳是确定consumer存活,加入或者退出group的有效手段。
这个值必须设置的小于session.timeout.ms,因为:
当Consumer由于某种原因不能发Heartbeat到coordinator时,并且时间超过session.timeout.ms时,就会认为该consumer已退出,它所订阅的partition会分配到同一group 内的其它的consumer上。
通常设置的值要低于session.timeout.ms的1/3。
默认值是:3000 (3s)
·session.timeout.ms
Consumer session 过期时间。这个值必须设置在broker configuration中的group.min.session.timeout.ms 与 group.max.session.timeout.ms之间。
其默认值是:10000 (10 s)
·enable.auto.commit
Consumer 在commit offset时有两种模式:自动提交,手动提交。手动提交在前面已经说过。自动提交:是Kafka Consumer会在后台周期性的去commit。
默认值是true。
·auto.commit.interval.ms
自动提交间隔。范围:[0,Integer.MAX],默认值是 5000 (5 s)
·auto.offset.reset
这个配置项,是告诉Kafka Broker在发现kafka在没有初始offset,或者当前的offset是一个不存在的值(如果一个record被删除,就肯定不存在了)时,该如何处理。它有4种处理方式:
1) earliest:自动重置到最早的offset。
2) latest:看上去重置到最晚的offset。
3) none:如果边更早的offset也没有的话,就抛出异常给consumer,告诉consumer在整个consumer group中都没有发现有这样的offset。
4) 如果不是上述3种,只抛出异常给consumer。
默认值是latest。
·connections.max.idle.ms
连接空闲超时时间。因为consumer只与broker有连接(coordinator也是一个broker),所以这个配置的是consumer到broker之间的。
默认值是:540000 (9 min)
·fetch.max.wait.ms
Fetch请求发给broker后,在broker中可能会被阻塞的(当topic中records的总size小于fetch.min.bytes时),此时这个fetch请求耗时就会比较长。这个配置就是来配置consumer最多等待response多久。
·fetch.min.bytes
当consumer向一个broker发起fetch请求时,broker返回的records的大小最小值。如果broker中数据量不够的话会wait,直到数据大小满足这个条件。
取值范围是:[0, Integer.Max],默认值是1。
默认值设置为1的目的是:使得consumer的请求能够尽快的返回。
·fetch.max.bytes
一次fetch请求,从一个broker中取得的records最大大小。如果在从topic中第一个非空的partition取消息时,如果取到的第一个record的大小就超过这个配置时,仍然会读取这个record,也就是说在这片情况下,只会返回这一条record。
broker、topic都会对producer发给它的message size做限制。所以在配置这值时,可以参考broker的message.max.bytes 和 topic的max.message.bytes的配置。
取值范围是:[0, Integer.Max],默认值是:52428800 (5 MB)
·max.partition.fetch.bytes
一次fetch请求,从一个partition中取得的records最大大小。如果在从topic中第一个非空的partition取消息时,如果取到的第一个record的大小就超过这个配置时,仍然会读取这个record,也就是说在这片情况下,只会返回这一条record。
broker、topic都会对producer发给它的message size做限制。所以在配置这值时,可以参考broker的message.max.bytes 和 topic的max.message.bytes的配置。
·max.poll.interval.ms
前面说过要求程序中不间断的调用poll()。如果长时间没有调用poll,且间隔超过这个值时,就会认为这个consumer失败了。
·max.poll.records
Consumer每次调用poll()时取到的records的最大数。
·receive.buffer.byte
Consumer receiver buffer (SO_RCVBUF)的大小。这个值在创建Socket连接时会用到。
取值范围是:[-1, Integer.MAX]。默认值是:65536 (64 KB)
如果值设置为-1,则会使用操作系统默认的值。
·request.timeout.ms
请求发起后,并不一定会很快接收到响应信息。这个配置就是来配置请求超时时间的。默认值是:305000 (305 s)
·client.id
Consumer进程的标识。如果设置一个人为可读的值,跟踪问题会比较方便。
·interceptor.classes
用户自定义interceptor。
·metadata.max.age.ms
Metadata数据的刷新间隔。即便没有任何的partition订阅关系变更也行执行。
范围是:[0, Integer.MAX],默认值是:300000 (5 min)
kafka consumer 配置详解的更多相关文章
- Kafka参数配置详解
配置参数 参数说明 broker.id =1 每一个broker在集群中的唯一标示,要求是正数.当该服务器的IP地址发生改变时,如果broker.id没有变化,则不会影响consumers的消息情况 ...
- KAFKA安装+配置详解+常用操作+监控
http://blog.csdn.net/hadas_wang/article/details/50056381 http://qiyishi.blog.51cto.com/5731577/18575 ...
- kafka原理和实践(五)spring-kafka配置详解
系列目录 kafka原理和实践(一)原理:10分钟入门 kafka原理和实践(二)spring-kafka简单实践 kafka原理和实践(三)spring-kafka生产者源码 kafka原理和实践( ...
- 日志分析工具ELK配置详解
日志分析工具ELK配置详解 一.ELK介绍 1.1 elasticsearch 1.1.1 elasticsearch介绍 ElasticSearch是一个基于Lucene的搜索服务器.它提供了一个分 ...
- rocketmq集群、配置详解和常用命令
集群原文地址: http://www.cnblogs.com/520playboy/p/6716235.html 常用命令原文地址: http://www.cnblogs.com/gmq-sh/p/6 ...
- Log4j配置详解(转)
一.Log4j简介 Log4j有三个主要的组件:Loggers(记录器),Appenders (输出源)和Layouts(布局).这里可简单理解为日志类别,日志要输出的地方和日志以何种形式输出.综合使 ...
- logback 常用配置详解<appender>
logback 常用配置详解 <appender> <appender>: <appender>是<configuration>的子节点,是负责写日志的 ...
- [转]阿里巴巴数据库连接池 druid配置详解
一.背景 java程序很大一部分要操作数据库,为了提高性能操作数据库的时候,又不得不使用数据库连接池.数据库连接池有很多选择,c3p.dhcp.proxool等,druid作为一名后起之秀,凭借其出色 ...
- libCURL开源库在VS2010环境下编译安装,配置详解
libCURL开源库在VS2010环境下编译安装,配置详解 转自:http://my.oschina.net/u/1420791/blog/198247 http://blog.csdn.net/su ...
随机推荐
- python多进程multiprocessing模块中Queue的妙用
最近的部门RPA项目中,小爬为了提升爬虫性能,使用了Python中的多进程(multiprocessing)技术,里面需要用到进程锁Lock,用到进程池Pool,同时利用map方法一次构造多个proc ...
- stm32高级定时器的应用——spwm
用过stm32定时器的朋友都知道,定时器的CCR寄存器,可以用来配置PWM的输出,但同样也可以用来配置spwm.废话不多说,直接上代码. 首先,你得考虑一下几个因素: 1.同步调制还是异步调制. 2 ...
- android模拟器访问PC本地接口
一般来讲PC本地接口是localhost:8080 而在安卓模拟器上用的话,他会映射模拟器本身的,也就是说,可以把模拟器也当成一个PC端来看待,这样会好理解点吧 而在模拟器上想要访问PC本地的loca ...
- Ubuntu16.04重新安装MySQL数据库
安装之前先检查mysql是否卸载干净 dpkg --list|grep mysql 如果没有卸载干净请看上篇文章将mysql卸载干净 Ubuntu16.04彻底卸载MySQL 开始安装 可以直接默认安 ...
- poi java读取excel文件
官网使用学习链接地址 http://poi.apache.org/components/spreadsheet/quick-guide.html
- VS 通过局域网访问调试状态下的web应用程序
1.点击vs的启动按钮 2.在任务栏找到IIS Express的图标,点击“显示所有应用程序” 3.如果只有本地localhost访问方式,点击对应应用程序的本地URL,就会显示对应的配置文件 4.点 ...
- Windbg程序调试系列3-线程阻塞问题
上一篇博文给大家分享了使用Windbg分析内存泄露问题: Windbg程序调试系列2-内存泄露问题 本篇我们继续跟大家分享,如何分析解决线程阻塞问题. 从根本上讲,线程阻塞属于程序Hang的一种,其表 ...
- java基础语法-内部类与匿名内部类
1.成员内部类(声明在类内部&&方法之外) class Person{ String name = "韩梅梅"; int age; class Bird{ Stri ...
- 00004-20180324-20180517-fahrenheit_converter--华氏温度到摄氏温度转换计算器
00004-20180324-20180517-fahrenheit_converter--华氏温度到摄氏温度转换计算器 def fahrenheit_converter(C): fahrenheit ...
- mysql_study_5
代码 mysql> CREATE TABLE shop ( ) UNSIGNED ZEROFILL ' NOT NULL, ) DEFAULT '' NOT NULL, ,) DEFAULT ' ...