1 UDF对每个值进行处理;

2 UDAF对分组后的每个值处理(必须分组)

    SparkConf sparkConf = new SparkConf()
.setMaster("local")
.setAppName("MySqlTest"); JavaSparkContext javaSparkContext = new JavaSparkContext(sparkConf); SQLContext sqlContext = new SQLContext(javaSparkContext); List<String> list = new ArrayList<String>();
list.add("2018-9-9,1,ab");
list.add("2018-5-9,1124,abg");
list.add("2018-9-9,1125,abc");
list.add("2018-5-9,1126,abh");
list.add("2016-10-9,1127,abc");
list.add("2016-10-9,1127,abcd");
list.add("2016-10-9,1127,abcder"); JavaRDD<String> rdd_list = javaSparkContext.parallelize(list, 5); JavaRDD<Row> rdd_row_list = rdd_list.map(new Function<String, Row>() {
@Override
public Row call(String s) throws Exception {
return RowFactory.create(s.split(",")[0], Long.parseLong(s.split(",")[1]), s.split(",")[2]);//转换成一个row对象
}
}); List<StructField> structFieldList = new ArrayList<StructField>();
structFieldList.add(DataTypes.createStructField("date", DataTypes.StringType, true));
structFieldList.add(DataTypes.createStructField("s", DataTypes.LongType, true));
structFieldList.add(DataTypes.createStructField("str", DataTypes.StringType, true));
StructType dyType = DataTypes.createStructType(structFieldList); DataFrame df_dyType = sqlContext.createDataFrame(rdd_row_list, dyType); df_dyType.registerTempTable("tmp_req");
df_dyType.show(); //1,注册一个简单用户自定义函数
sqlContext.udf().register("zzq123", new UDF1<String, Integer>() {
@Override
public Integer call(String str) throws Exception {
return str.length();
}
}, DataTypes.IntegerType); DataFrame df_group = sqlContext.sql("select date,s,zzq123(date) as zzq123 from tmp_req ");//UDF如果没有指定名称,则随机名称
df_group.show(); //1,注册一个复杂的用户自定义聚合函数
sqlContext.udf().register("zzq_agg", new StringLen());//zzq_agg函数计算出分组后本组所有字符串总长度
DataFrame df_group_agg = sqlContext.sql("select date,zzq_agg(str) strSum from tmp_req group by date ");//UDAF为聚合情况下使用
df_group_agg.show();

UDAF实体:

public class StringLen extends UserDefinedAggregateFunction {
@Override
public StructType inputSchema() {//inputSchema指的是输入的数据类型
List<StructField> fields = new ArrayList<StructField>();
fields.add(DataTypes.createStructField("_string", DataTypes.StringType, true));
return DataTypes.createStructType(fields);
} @Override
public StructType bufferSchema() {//bufferSchema指的是 中间进行聚合时 所处理的数据类型
List<StructField> fields = new ArrayList<StructField>();
fields.add(DataTypes.createStructField("_len", DataTypes.IntegerType, true));
return DataTypes.createStructType(fields);
} @Override
public DataType dataType() {//dataType指的是函数返回值的类型
return DataTypes.IntegerType;
} @Override
public boolean deterministic() {//一致性检验,如果为true,那么输入不变的情况下计算的结果也是不变的
return true;
} /**
* 对于每个分组的数据进行最原始的初始化操作
*
* @param buffer
*/
@Override
public void initialize(MutableAggregationBuffer buffer) {
buffer.update(0, 0);//初始化的时候初始最开始的字符串的长度
} /**
* 用输入数据input更新buffer值,类似于combineByKey
*
* @param buffer
* @param input
*/
@Override
public void update(MutableAggregationBuffer buffer, Row input) {//分组后的每个值处理方法
buffer.update(0, ((Integer) buffer.getAs(0)) + input.getAs(0).toString().length());//返回自己的长度
} /**
* 合并两个buffer,将buffer2合并到buffer1.在合并两个分区聚合结果的时候会被用到,类似于reduceByKey
* 这里要注意该方法没有返回值,在实现的时候是把buffer2合并到buffer1中去,你需要实现这个合并细节
*
* @param buffer1
* @param buffer2
*/
@Override
public void merge(MutableAggregationBuffer buffer1, Row buffer2) {//相当于shuffle环节,将每组在不同executor上的数据进行combiner
buffer1.update(0, ((Integer) buffer1.getAs(0)) + ((Integer) buffer2.getAs(0)));//两次的字符串长度相加
} /**
* 计算并返回最终的聚合结果
*
* @param buffer
* @return
*/
@Override
public Object evaluate(Row buffer) {
return buffer.getInt(0);
}
}

spark-sql自定义函数UDF和UDAF的更多相关文章

  1. 详解Spark sql用户自定义函数:UDF与UDAF

    UDAF = USER DEFINED AGGREGATION FUNCTION Spark sql提供了丰富的内置函数供猿友们使用,辣为何还要用户自定义函数呢?实际的业务场景可能很复杂,内置函数ho ...

  2. hive自定义函数UDF UDTF UDAF

    Hive 自定义函数 UDF UDTF UDAF 1.UDF:用户定义(普通)函数,只对单行数值产生作用: UDF只能实现一进一出的操作. 定义udf 计算两个数最小值 public class Mi ...

  3. Spark SQL 自定义函数类型

    Spark SQL 自定义函数类型 一.spark读取数据 二.自定义函数结构 三.附上长长的各种pom 一.spark读取数据 前段时间一直在研究GeoMesa下的Spark JTS,Spark J ...

  4. Spark SQL 用户自定义函数UDF、用户自定义聚合函数UDAF 教程(Java踩坑教学版)

    在Spark中,也支持Hive中的自定义函数.自定义函数大致可以分为三种: UDF(User-Defined-Function),即最基本的自定义函数,类似to_char,to_date等 UDAF( ...

  5. 大数据学习day29-----spark09-------1. 练习: 统计店铺按月份的销售额和累计到该月的总销售额(SQL, DSL,RDD) 2. 分组topN的实现(row_number(), rank(), dense_rank()方法的区别)3. spark自定义函数-UDF

    1. 练习 数据: (1)需求1:统计有过连续3天以上销售的店铺有哪些,并且计算出连续三天以上的销售额 第一步:将每天的金额求和(同一天可能会有多个订单) SELECT sid,dt,SUM(mone ...

  6. Spark(十三)SparkSQL的自定义函数UDF与开窗函数

    一 自定义函数UDF 在Spark中,也支持Hive中的自定义函数.自定义函数大致可以分为三种: UDF(User-Defined-Function),即最基本的自定义函数,类似to_char,to_ ...

  7. SparkSQL中的自定义函数UDF

    在Spark中,也支持Hive中的自定义函数.自定义函数大致可以分为三种: UDF(User-Defined-Function),即最基本的自定义函数,类似to_char,to_date等 UDAF( ...

  8. T-SQL: 17 个与日期时间相关的自定义函数(UDF),周日作为周的最后一天,均不受 @@DateFirst、语言版本影响!

    原文:T-SQL: 17 个与日期时间相关的自定义函数(UDF),周日作为周的最后一天,均不受 @@DateFirst.语言版本影响! CSDN 的 Blog 太滥了!无时不刻地在坏! 开始抢救性搬家 ...

  9. 10_Hive自定义函数UDF

    Hive官方的UDF手册地址是:https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF 1.使用内置函数的快捷方法: 创 ...

随机推荐

  1. 其他-pkuwc2019数学考试题目

    时限150min,有windows和Ubuntu使用 十道填空题,在poj上举行,选手提交答案,系统将答案自动填入一个作用是输出答案的程序,再将该程序提交评测(由于该程序变量名为longlong,所以 ...

  2. 【转】【Linux】Swap与Memory

    背景介绍 Memory指机器物理内存,读写速度低于CPU一个量级,但是高于磁盘不止一个量级.所以,程序和数据如果在内存的话,会有非常快的读写速度.但是,内存的造价是要高于磁盘的,且内存的断电丢失数据也 ...

  3. 【原创】数据库基础之Mysql(2)主从库配置

    一 安装 # wget -i -c http://dev.mysql.com/get/mysql57-community-release-el7-10.noarch.rpm# yum -y insta ...

  4. Deformable Convolutional Network

    Deformable conv赋予了CNN位置变换的能力,与普通卷积的对比如下.可以看到,在每个特征点上,会产生一个偏移,变成 不规则的卷积(感觉本质上,就是让CNN自己去学习感受野). 思想来源于S ...

  5. URL.createObjectURL() 实现本地上传图片 并预览功能

    URL.createObjectURL() 静态方法会创建一个 DOMString,其中包含一个表示参数中给出的对象的URL.这个 URL 的生命周期和创建它的窗口中的 document 绑定.这个新 ...

  6. sublime的插件

    记录一下常用的插件: 1. htmlpretty 用于HTML.CSS.JS的格式化,以方便阅读代码.插件全名是HTML-CSS-JS Pretty.安装后使用方法是: 打开一个HTML/CSS/JS ...

  7. Java桥接模式

    定义:将抽象部分与它的具体实现部分分离,使他们都可以独立的变化 通过组合的方式建立两个类之间联系,而不是继承 类型:结构型 适用场景: 抽象和具体实现之间增加更多的灵活性 一个类存在两个(或多个)独立 ...

  8. scrapy 通过FormRequest模拟登录再继续

    1.参考 https://doc.scrapy.org/en/latest/topics/spiders.html#scrapy.spiders.Spider.start_requests 自动提交 ...

  9. 利用yarn capacity scheduler在EMR集群上实现大集群的多租户的集群资源隔离和quota限制

    转自:https://m.aliyun.com/yunqi/articles/79700 背景 使用过hadoop的人基本都会考虑集群里面资源的调度和优先级的问题,假设你现在所在的公司有一个大hado ...

  10. Servlet(八):ServletContext对象和ServletConfig对象

    ServletContext 对象:问题: Request 解决了一次请求内的数据共享问题,session 解决了用户不同请求的数据共享问题,那么不同的用户的数据共享该怎么办呢?解决: 使用 Serv ...