验证 (3. 6) 式, 即证明 $$\bex \cfrac{\rd J}{\rd t}=J\Div_y {\bf v}. \eex$$

证明: $$\beex \bea \cfrac{\rd J}{\rd t} &=\cfrac{\rd }{\rd t}|{\bf F}|\\ &=\cfrac{\rd }{\rd t} \sum_{j_1\cdots j_n}(-1)^{\tau(j_1\cdots j_n)} f_{1j_1}\cdots f_{nj_n}\\ &=\sum_{j_1\cdots j_n}(-1)^{\tau(j_1\cdots j_n)} \sum_k f_{1j_1}\cdot \cfrac{\rd f_{kj_k}}{\rd t}\cdots f_{nj_n}\\ &=\sum_k \sev{\ba{ccc} f_{11}&\cdots&f_{1n}\\ \vdots&&\vdots\\ \cfrac{\rd f_{k1}}{\rd t}&\cdots&\cfrac{\rd f_{kn}}{\rd t}\\ \vdots&&\vdots\\ f_{n1}&\cdots&f_{nn} \ea}\\ &=\sum_{k,j}\cfrac{\rd f_{kj}}{\rd t}A_{kj}\quad\sex{ A_{kj}:\ f_{kj}\mbox{ 在 }{\bf F}\mbox{ 中的代数余子式} }\\ &=\sum_{k,j} \cfrac{\p v_k}{\p x_j} A_{kj}\\ &\quad\sex{ \cfrac{\rd f_{kj}}{\rd t} =\cfrac{\p }{\p t}\cfrac{\p y_k}{\p x_j} =\cfrac{\p }{\p x_j}\cfrac{\p y_k}{\p t} =\cfrac{\p v_k}{\p x_j}: \mbox{看成 }t,x\mbox{ 的函数} }\\ &=\sum_{k,j,l} \cfrac{\p v_k}{\p y_l}\cfrac{\p y_l}{\p x_j}A_{kj}\quad\sex{\mbox{看成 }t,y\mbox{ 的函数}}\\ &=\sum_{k,l}\cfrac{\p v_k}{\p y_l}\sum_j f_{lj}A_{kj}\\ &=\sum_k \cfrac{\p v_k}{\p y_k}J\\ &=J\Div_y{\bf v}. \eea \eeex$$

[物理学与PDEs]第5章习题2 Jacobian 的物质导数的更多相关文章

  1. [物理学与PDEs]第5章习题参考解答

    [物理学与PDEs]第5章习题1 矩阵的极分解 [物理学与PDEs]第5章习题2 Jacobian 的物质导数 [物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性 [物理学与PDEs ...

  2. [物理学与PDEs]第1章习题参考解答

    [物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...

  3. [物理学与PDEs]第2章习题参考解答

    [物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...

  4. [物理学与PDEs]第3章习题参考解答

    [物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...

  5. [物理学与PDEs]第4章习题参考解答

    [物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程 [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程 [物理学与PDEs]第4章 ...

  6. [物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件

    写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 ( ...

  7. [物理学与PDEs]第3章习题3电磁场的矢势在 Lorentz 规范下满足的方程

    设 $\phi$ 及 ${\bf A}$ 分别为电磁场的标势及矢势 (见第一章 $\S$ 6). 试证明: 若 $\phi$ 及 ${\bf A}$ 满足条件 $$\bex \phi+\cfrac{1 ...

  8. [物理学与PDEs]第1章习题5 偶极子的电场强度

    试计算由习题 4 给出的电偶极子的所形成的电场的电场强度. 解答: $$\beex \bea {\bf E}(P)&=\cfrac{1}{4\pi\ve_0} \sez{\cfrac{-q}{ ...

  9. [物理学与PDEs]第5章习题10 多凸函数一个例子

    证明函数 $$\bex \hat W({\bf F})=\sedd{\ba{ll} \cfrac{1}{\det{\bf F}},&if\ \det{\bf F}>0,\\ +\inft ...

随机推荐

  1. 先vue-cli,再nuxt试试路由

    https://segmentfault.com/a/1190000007933349

  2. Linux下添加windows字体

    在Linux下使用wqy字体,在视觉效果上就已近很好了,其实没有必要添加windows字体.但是显然有些人(比如领导,^..^)就喜欢宋体.楷体,所以添加windows字体有时还是需要的,幸运的是这件 ...

  3. 二 Struts2 接收数据

    struts2绑定页面参数三种方式1.普通属性:在action中写与页面参数相同的属性名,然后set方法2.用对象来接收:在action中写一个对象,表单元素名改为:对象名.属性名3.用实现Model ...

  4. 排序学习实践---ranknet方法

    要: 1 背景      随着移动互联网的崛起,越来越多的用户开始习惯于从手机完成吃.喝.玩.乐.衣.食.住.行等各个方面的需求.打开手机,点开手淘.美团等APP,商品玲玲满目,而让用户将所有商品一页 ...

  5. [第二届构建之法论坛] 预培训文档(Java版)

    本博客是第二届构建之法论坛暨软件工程培训活动预培训文档中[适用于结对编程部分的Java版本],需要实验者有一部分Java基础. 目录 Part0.背景 Part1.配置环境 配置JDK Linux 平 ...

  6. jQuery对页面的操作

    一.对元素内容和值进行操作 1.对元素内容操作 [text()]:获取值. [text(val)]:获取并修改值. [html()]:获取值. [html(val)]:获取并修改值,与text的区别在 ...

  7. SpringBoot整合swagger

    Swagger使用 Swagger有什么用? swagger是一个流行的API开发框架,这个框架以“开放API声明”(OpenAPI Specification,OAS)为基础, 对整个API的开发周 ...

  8. css定位的各属性占位问题

    CSS position 属性  不定位 static 元素框正常生成.块级元素生成一个矩形框,作为文档流的一部分,行内元素则会创建一个或多个行框,置于其父元素中. ----------------- ...

  9. 【转】Esp8266学习之旅① 搭建开发环境,开始一个“hellow world”串口打印。

    @2019-02-28 [小记] Esp8266学习之旅① 搭建开发环境,开始一个“hellow world”串口打印.

  10. <Android基础>(四) Fragment Part 1

    Fragment 1)Fragment的简单用法 2)动态添加Fragment 3)在Fragment中模拟返回栈 4)Fragment和活动之间通信 第四章 Fragment Fragment是一种 ...