pytorch 读数据接口 制作数据集 data.dataset
【吐槽】
啊,代码,你这个大猪蹄子
自己写了cifar10的数据接口,跟官方接口load的数据一样,
沾沾自喜,以为自己会写数据接口了
几天之后,突然想,自己的代码为啥有点慢呢,这数据集不大啊
用了官方接口,真快啊。。。
啊啊啊啊啊啊啊啊
但这是好事,至少我明白了一点知识对吧
【lesson】
看了cifar10的接口,发现自己在数据集初始化的地方写的太少了,应该在初始化的时候就把所有数据读进来,这样的话在__getitem__的时候才能快。
人家的初始化:
if self.train:
self.train_data = []
self.train_labels = []
for fentry in self.train_list:
f = fentry[0]
file = os.path.join(self.root, self.base_folder, f)
fo = open(file, 'rb')
if sys.version_info[0] == 2:
entry = pickle.load(fo)
else:
entry = pickle.load(fo, encoding='latin1')
self.train_data.append(entry['data'])
if 'labels' in entry:
self.train_labels += entry['labels']
else:
self.train_labels += entry['fine_labels']
fo.close() self.train_data = np.concatenate(self.train_data)
self.train_data = self.train_data.reshape((50000, 3, 32, 32))
self.train_data = self.train_data.transpose((0, 2, 3, 1)) # convert to HWC
人家的getitem
def __getitem__(self, index):
"""
Args:
index (int): Index Returns:
tuple: (image, target) where target is index of the target class.
"""
if self.train:
img, target = self.train_data[index], self.train_labels[index]
else:
img, target = self.test_data[index], self.test_labels[index] # doing this so that it is consistent with all other datasets
# to return a PIL Image
img = Image.fromarray(img) if self.transform is not None:
img = self.transform(img) if self.target_transform is not None:
target = self.target_transform(target) return img, target
自己:(都写到getitem里面了)
def __init__(self, root, transforms=transform(), train=True, test=False):
self.root = root
self.transform = transforms
self.train = train
self.test = test
if self.test:
self.train = False def __getitem__(self, item):
x = math.floor(item / 10000) + 1
y = item % 10000
if not self.train and not self.test:
x = 5
y = 5000+item imgpath = os.path.join(self.root, "data_batch_"+str(x))
with open(imgpath, 'rb') as fo:
dict = pickle.load(fo, encoding='bytes')
d_decode = {}
for k,v in dict.items():
d_decode[k.decode('utf8')] = v
dict = d_decode
data = dict['data'][y] # 3*32*32==3072
data = np.reshape(data,(3,32,32))
data = data.transpose(1,2,0)
data = self.transform(data)
label = dict['labels'][y]
# label = torch.from_numpy(label) return data, label
附自己的代码和人家的代码全部
人家:
base_folder = 'cifar-10-batches-py'
url = "https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz"
filename = "cifar-10-python.tar.gz"
tgz_md5 = 'c58f30108f718f92721af3b95e74349a'
train_list = [
['data_batch_1', 'c99cafc152244af753f735de768cd75f'],
['data_batch_2', 'd4bba439e000b95fd0a9bffe97cbabec'],
['data_batch_3', '54ebc095f3ab1f0389bbae665268c751'],
['data_batch_4', '634d18415352ddfa80567beed471001a'],
['data_batch_5', '482c414d41f54cd18b22e5b47cb7c3cb'],
] test_list = [
['test_batch', '40351d587109b95175f43aff81a1287e'],
] def __init__(self, root, train=True,
transform=None, target_transform=None,
download=False):
self.root = os.path.expanduser(root)
self.transform = transform
self.target_transform = target_transform
self.train = train # training set or test set if download:
self.download() if not self._check_integrity():
raise RuntimeError('Dataset not found or corrupted.' +
' You can use download=True to download it') # now load the picked numpy arrays
if self.train:
self.train_data = []
self.train_labels = []
for fentry in self.train_list:
f = fentry[0]
file = os.path.join(self.root, self.base_folder, f)
fo = open(file, 'rb')
if sys.version_info[0] == 2:
entry = pickle.load(fo)
else:
entry = pickle.load(fo, encoding='latin1')
self.train_data.append(entry['data'])
if 'labels' in entry:
self.train_labels += entry['labels']
else:
self.train_labels += entry['fine_labels']
fo.close() self.train_data = np.concatenate(self.train_data)
self.train_data = self.train_data.reshape((50000, 3, 32, 32))
self.train_data = self.train_data.transpose((0, 2, 3, 1)) # convert to HWC
else:
f = self.test_list[0][0]
file = os.path.join(self.root, self.base_folder, f)
fo = open(file, 'rb')
if sys.version_info[0] == 2:
entry = pickle.load(fo)
else:
entry = pickle.load(fo, encoding='latin1')
self.test_data = entry['data']
if 'labels' in entry:
self.test_labels = entry['labels']
else:
self.test_labels = entry['fine_labels']
fo.close()
self.test_data = self.test_data.reshape((10000, 3, 32, 32))
self.test_data = self.test_data.transpose((0, 2, 3, 1)) # convert to HWC def __getitem__(self, index):
"""
Args:
index (int): Index Returns:
tuple: (image, target) where target is index of the target class.
"""
if self.train:
img, target = self.train_data[index], self.train_labels[index]
else:
img, target = self.test_data[index], self.test_labels[index] # doing this so that it is consistent with all other datasets
# to return a PIL Image
img = Image.fromarray(img) if self.transform is not None:
img = self.transform(img) if self.target_transform is not None:
target = self.target_transform(target) return img, target
pytorch 读数据接口 制作数据集 data.dataset的更多相关文章
- pytorch人脸识别——自己制作数据集
这是一篇面向新手的博文:因为本人也是新手,记录一下自己在做这个项目遇到的大大小小的坑. 按照下面的例子写就好了 import torch as t from torch.utils import da ...
- Pytorch数据集读入——Dataset类,实现数据集打乱Shuffle
在进行相关平台的练习过程中,由于要自己导入数据集,而导入方法在市面上五花八门,各种库都可以应用,在这个过程中我准备尝试torchvision的库dataset torchvision.datasets ...
- 使用tensorflow.data.Dataset构造batch数据集(具体用法在下一篇博客介绍)
import tensorflow as tf import numpy as np def _parse_function(x): num_list = np.arange(10) return n ...
- 『计算机视觉』Mask-RCNN_训练网络其一:数据集与Dataset类
Github地址:Mask_RCNN 『计算机视觉』Mask-RCNN_论文学习 『计算机视觉』Mask-RCNN_项目文档翻译 『计算机视觉』Mask-RCNN_推断网络其一:总览 『计算机视觉』M ...
- [PyTorch 学习笔记] 2.1 DataLoader 与 DataSet
thumbnail: https://image.zhangxiann.com/jeison-higuita-W19AQY42rUk-unsplash.jpg toc: true date: 2020 ...
- 基于pytorch实现Resnet对本地数据集的训练
本文是使用pycharm下的pytorch框架编写一个训练本地数据集的Resnet深度学习模型,其一共有两百行代码左右,分成mian.py.network.py.dataset.py以及train.p ...
- TensorFlow2.0(10):加载自定义图片数据集到Dataset
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...
- MindSpore数据集mindspore::dataset
MindSpore数据集mindspore::dataset ResizeBilinear #include <image_process.h> bool ResizeBilinear(L ...
- PyTorch中的MIT ADE20K数据集的语义分割
PyTorch中的MIT ADE20K数据集的语义分割 代码地址:https://github.com/CSAILVision/semantic-segmentation-pytorch Semant ...
随机推荐
- 亚马逊VE账号运营
VE劲爆内幕大揭秘!“仿牌+Amazon VE”跟卖之路 Amazon Vendor Express 是Amazon.com2015年下旬推出的新的供应商平台,商家通过这个平台可以把产品卖给Amazo ...
- js下拉列表选中
var monthobj = document.getElementById("pid");// for(var i=0; i<monthobj.options.length ...
- CF #552(div3)G 最小lcm
题目链接:http://codeforces.com/contest/1154/problem/G 题意:lcm是最小公倍数,本题就是给你一个数组(可能会重复),要求你判断出那两个数的最小公倍数最小, ...
- git不提交某个文件
在版本库中的文件,即使维护在.gitignore也不管用了.要先移除. 比如Constants.java,进入到这个文件目录下: 第一步:git rm -r -n —cached Constants. ...
- vue-quill-editor富文本编辑器,上传图片自定义为借口上传
vue-quill-editor富文本编辑器,上传图片自定义为借口上传 博客地址:https://blog.csdn.net/lyj2018gyq/article/details/82585194
- CQRS粗浅理解
CQRS(命令查询责任分离)是一种奇特的模式,表示解耦系统的输入和输出. 通常情况下,输入端将数据写到数据库,输出端从数据库查询.与读写锁的场景类似,写的过程中不能读.正常情况下没有问题,但是在大规模 ...
- 软件测试第一次试验JUnit
一.Junit, hamcrest以及eclemma的安装 对于Junit和hamcrest的安装,我并没有从下载Junit和hamcrest相关的jar包然后通过build path导入到项目中,而 ...
- mysql密码遗失
仅以本地数据库测试 本地数据库密码遗失,百度上的方法很麻烦,想着没有用的一个本地库(localhost),就想删库重建,navicat上点击数据库,删除链接.然后在新建库,同名同端口的,此时密码已经制 ...
- VS2013中调驱动
https://msdn.microsoft.com/en-us/library/windows/hardware/jj200334(v=vs.85).aspx 需要注意的就是 debugport:n ...
- Altium designer 新建快捷键
示例: 1.按下Ctrl: 2.点击需要建立快捷键的图标:点击交互式布线图标,然后在选择性输入要用到的快捷键: