【吐槽】

啊,代码,你这个大猪蹄子

自己写了cifar10的数据接口,跟官方接口load的数据一样,

沾沾自喜,以为自己会写数据接口了

几天之后,突然想,自己的代码为啥有点慢呢,这数据集不大啊

用了官方接口,真快啊。。。

啊啊啊啊啊啊啊啊

但这是好事,至少我明白了一点知识对吧

【lesson】

看了cifar10的接口,发现自己在数据集初始化的地方写的太少了,应该在初始化的时候就把所有数据读进来,这样的话在__getitem__的时候才能快。

人家的初始化:

 if self.train:
self.train_data = []
self.train_labels = []
for fentry in self.train_list:
f = fentry[0]
file = os.path.join(self.root, self.base_folder, f)
fo = open(file, 'rb')
if sys.version_info[0] == 2:
entry = pickle.load(fo)
else:
entry = pickle.load(fo, encoding='latin1')
self.train_data.append(entry['data'])
if 'labels' in entry:
self.train_labels += entry['labels']
else:
self.train_labels += entry['fine_labels']
fo.close() self.train_data = np.concatenate(self.train_data)
self.train_data = self.train_data.reshape((50000, 3, 32, 32))
self.train_data = self.train_data.transpose((0, 2, 3, 1)) # convert to HWC

人家的getitem

    def __getitem__(self, index):
"""
Args:
index (int): Index Returns:
tuple: (image, target) where target is index of the target class.
"""
if self.train:
img, target = self.train_data[index], self.train_labels[index]
else:
img, target = self.test_data[index], self.test_labels[index] # doing this so that it is consistent with all other datasets
# to return a PIL Image
img = Image.fromarray(img) if self.transform is not None:
img = self.transform(img) if self.target_transform is not None:
target = self.target_transform(target) return img, target

自己:(都写到getitem里面了)

 def __init__(self, root, transforms=transform(), train=True, test=False):
self.root = root
self.transform = transforms
self.train = train
self.test = test
if self.test:
self.train = False def __getitem__(self, item):
x = math.floor(item / 10000) + 1
y = item % 10000
if not self.train and not self.test:
x = 5
y = 5000+item imgpath = os.path.join(self.root, "data_batch_"+str(x))
with open(imgpath, 'rb') as fo:
dict = pickle.load(fo, encoding='bytes')
d_decode = {}
for k,v in dict.items():
d_decode[k.decode('utf8')] = v
dict = d_decode
data = dict['data'][y] # 3*32*32==3072
data = np.reshape(data,(3,32,32))
data = data.transpose(1,2,0)
data = self.transform(data)
label = dict['labels'][y]
# label = torch.from_numpy(label) return data, label

附自己的代码和人家的代码全部

人家:

 base_folder = 'cifar-10-batches-py'
url = "https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz"
filename = "cifar-10-python.tar.gz"
tgz_md5 = 'c58f30108f718f92721af3b95e74349a'
train_list = [
['data_batch_1', 'c99cafc152244af753f735de768cd75f'],
['data_batch_2', 'd4bba439e000b95fd0a9bffe97cbabec'],
['data_batch_3', '54ebc095f3ab1f0389bbae665268c751'],
['data_batch_4', '634d18415352ddfa80567beed471001a'],
['data_batch_5', '482c414d41f54cd18b22e5b47cb7c3cb'],
] test_list = [
['test_batch', '40351d587109b95175f43aff81a1287e'],
] def __init__(self, root, train=True,
transform=None, target_transform=None,
download=False):
self.root = os.path.expanduser(root)
self.transform = transform
self.target_transform = target_transform
self.train = train # training set or test set if download:
self.download() if not self._check_integrity():
raise RuntimeError('Dataset not found or corrupted.' +
' You can use download=True to download it') # now load the picked numpy arrays
if self.train:
self.train_data = []
self.train_labels = []
for fentry in self.train_list:
f = fentry[0]
file = os.path.join(self.root, self.base_folder, f)
fo = open(file, 'rb')
if sys.version_info[0] == 2:
entry = pickle.load(fo)
else:
entry = pickle.load(fo, encoding='latin1')
self.train_data.append(entry['data'])
if 'labels' in entry:
self.train_labels += entry['labels']
else:
self.train_labels += entry['fine_labels']
fo.close() self.train_data = np.concatenate(self.train_data)
self.train_data = self.train_data.reshape((50000, 3, 32, 32))
self.train_data = self.train_data.transpose((0, 2, 3, 1)) # convert to HWC
else:
f = self.test_list[0][0]
file = os.path.join(self.root, self.base_folder, f)
fo = open(file, 'rb')
if sys.version_info[0] == 2:
entry = pickle.load(fo)
else:
entry = pickle.load(fo, encoding='latin1')
self.test_data = entry['data']
if 'labels' in entry:
self.test_labels = entry['labels']
else:
self.test_labels = entry['fine_labels']
fo.close()
self.test_data = self.test_data.reshape((10000, 3, 32, 32))
self.test_data = self.test_data.transpose((0, 2, 3, 1)) # convert to HWC def __getitem__(self, index):
"""
Args:
index (int): Index Returns:
tuple: (image, target) where target is index of the target class.
"""
if self.train:
img, target = self.train_data[index], self.train_labels[index]
else:
img, target = self.test_data[index], self.test_labels[index] # doing this so that it is consistent with all other datasets
# to return a PIL Image
img = Image.fromarray(img) if self.transform is not None:
img = self.transform(img) if self.target_transform is not None:
target = self.target_transform(target) return img, target

pytorch 读数据接口 制作数据集 data.dataset的更多相关文章

  1. pytorch人脸识别——自己制作数据集

    这是一篇面向新手的博文:因为本人也是新手,记录一下自己在做这个项目遇到的大大小小的坑. 按照下面的例子写就好了 import torch as t from torch.utils import da ...

  2. Pytorch数据集读入——Dataset类,实现数据集打乱Shuffle

    在进行相关平台的练习过程中,由于要自己导入数据集,而导入方法在市面上五花八门,各种库都可以应用,在这个过程中我准备尝试torchvision的库dataset torchvision.datasets ...

  3. 使用tensorflow.data.Dataset构造batch数据集(具体用法在下一篇博客介绍)

    import tensorflow as tf import numpy as np def _parse_function(x): num_list = np.arange(10) return n ...

  4. 『计算机视觉』Mask-RCNN_训练网络其一:数据集与Dataset类

    Github地址:Mask_RCNN 『计算机视觉』Mask-RCNN_论文学习 『计算机视觉』Mask-RCNN_项目文档翻译 『计算机视觉』Mask-RCNN_推断网络其一:总览 『计算机视觉』M ...

  5. [PyTorch 学习笔记] 2.1 DataLoader 与 DataSet

    thumbnail: https://image.zhangxiann.com/jeison-higuita-W19AQY42rUk-unsplash.jpg toc: true date: 2020 ...

  6. 基于pytorch实现Resnet对本地数据集的训练

    本文是使用pycharm下的pytorch框架编写一个训练本地数据集的Resnet深度学习模型,其一共有两百行代码左右,分成mian.py.network.py.dataset.py以及train.p ...

  7. TensorFlow2.0(10):加载自定义图片数据集到Dataset

    .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...

  8. MindSpore数据集mindspore::dataset

    MindSpore数据集mindspore::dataset ResizeBilinear #include <image_process.h> bool ResizeBilinear(L ...

  9. PyTorch中的MIT ADE20K数据集的语义分割

    PyTorch中的MIT ADE20K数据集的语义分割 代码地址:https://github.com/CSAILVision/semantic-segmentation-pytorch Semant ...

随机推荐

  1. Oracle解决ora-01653 无法通过1024扩展

    综合上述检查结果,可断定遇到的问题是因为可能性1—表空间不足导致.解决办法也就是扩大表空间 扩大表空间的四种方法: 1.增加数据文件 ALTER TABLESPACE ***_TRD ADD DATA ...

  2. js点击加载更多可以增加几条数据的显示

      <div class="list"> <div class="one"> <div class="img" ...

  3. vue-quill-editor富文本编辑器,上传图片自定义为借口上传

    vue-quill-editor富文本编辑器,上传图片自定义为借口上传 博客地址:https://blog.csdn.net/lyj2018gyq/article/details/82585194

  4. 从零开始学Python 二

    上一章我们已经安装好了Python环境,并且写出了第一个Python程序.下面我们接着继续学习.首先,来分析下上一章我们写的代码. 我们最初的目的是为了可以输出一串有意义的文字,最终选择了英文语句“h ...

  5. 使用PHP添加圆形头像

    首先来看一下PHP怎样生成一个圆形透明的图片 function circle($url){ $w = 430; $h=430; // original size $path = dirname(__F ...

  6. Fortran与C/C++混合编程示例

    以下例子均来自网络,只是稍作了编辑,方便今后查阅. 子目录 (一) Fortran调用C语言 (二) C语言调用Fortran (三) C++ 调用Fortran (四) Fortran 调用 C++ ...

  7. Dubbo常用配置解析

    一.多版本的支持 如何发布服务,需要将需要暴露的服务接口发布出去供客户端调用,需要在java同级目录新建一个resources目录,然后将resoureces目录标记成Test Resoureces ...

  8. go-ethereum源码分析 PartII 共识算法

    首先从共识引擎-Engine开始记录 Engine是一个独立于具体算法的共识引擎接口 Author(header) (common.Address, error) 返回打包header对应的区块的矿工 ...

  9. webAR涉及的技术

    1.技术体系 1.1技术体系整理   其中绿色底色的代表Demo中表现出的能力比较成熟,可以直接应用.   脑图地址:http://naotu.baidu.com/file/3392a895a9039 ...

  10. with的上下文管理

    1.with with语句是在Python2.6中出现的新语句.在Python2.6以前要正确的处理涉及到异常的资源管理时,需要使用try/finally代码结构.如要实现文件在操作出现异常时也能正确 ...