Jury Compromise
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 33737   Accepted: 9109   Special Judge

Description

In Frobnia, a far-away country, the verdicts in court trials are determined by a jury consisting of members of the general public. Every time a trial is set to begin, a jury has to be selected, which is done as follows. First, several people are drawn randomly from the public. For each person in this pool, defence and prosecution assign a grade from 0 to 20 indicating their preference for this person. 0 means total dislike, 20 on the other hand means that this person is considered ideally suited for the jury. 
Based on the grades of the two parties, the judge selects the jury. In order to ensure a fair trial, the tendencies of the jury to favour either defence or prosecution should be as balanced as possible. The jury therefore has to be chosen in a way that is satisfactory to both parties. 
We will now make this more precise: given a pool of n potential jurors and two values di (the defence's value) and pi (the prosecution's value) for each potential juror i, you are to select a jury of m persons. If J is a subset of {1,..., n} with m elements, then D(J ) = sum(dk) k belong to J 
and P(J) = sum(pk) k belong to J are the total values of this jury for defence and prosecution. 
For an optimal jury J , the value |D(J) - P(J)| must be minimal. If there are several jurys with minimal |D(J) - P(J)|, one which maximizes D(J) + P(J) should be selected since the jury should be as ideal as possible for both parties. 
You are to write a program that implements this jury selection process and chooses an optimal jury given a set of candidates.

Input

The input file contains several jury selection rounds. Each round starts with a line containing two integers n and m. n is the number of candidates and m the number of jury members. 
These values will satisfy 1<=n<=200, 1<=m<=20 and of course m<=n. The following n lines contain the two integers pi and di for i = 1,...,n. A blank line separates each round from the next. 
The file ends with a round that has n = m = 0.

Output

For each round output a line containing the number of the jury selection round ('Jury #1', 'Jury #2', etc.). 
On the next line print the values D(J ) and P (J ) of your jury as shown below and on another line print the numbers of the m chosen candidates in ascending order. Output a blank before each individual candidate number. 
Output an empty line after each test case.

Sample Input

4 2
1 2
2 3
4 1
6 2
0 0

Sample Output

Jury #1
Best jury has value 6 for prosecution and value 4 for defence:
2 3

Hint

If your solution is based on an inefficient algorithm, it may not execute in the allotted time.

Source

 
题意:
从n个人中选m个人,要求sum1-sum2最小,sum1+sum2最大.
思路:
现用dp(j, k)表示,取j 个候选人,使其辩控差为k 的所有方案中,辩控和最大的那个方案(该方案称为“方案dp(j, k)”)的辩控和。
可行方案dp(j-1, x)能演化成方案dp(j, k)的必要条件是:存在某个候选人i,i 在方案dp(j-1, x)中没有被选上,且x+V(i) = k。在所有满足该必要条件的dp(j-1, x)中,选出 dp(j-1, x) + S(i) 的值最大的那个,那么方案dp(j-1, x)再加上候选人i,就演变成了方案 dp(j, k)。
 
#include<iostream>
#include<algorithm>
#include<vector>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime>
#define fuck(x) cout<<#x<<" = "<<x<<endl;
#define ls (t<<1)
#define rs ((t<<1)+1)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = ;
const int inf = 2.1e9;
const ll Inf = ;
const int mod = ;
const double eps = 1e-;
const double pi = acos(-);
int n,m;
int dp[][];
int num1[],num2[],sum[],diff[];
int path[][];
int fix = ; bool check(int i,int k,int j){
while(i&&path[i][k]!=j){
k-=diff[path[i][k]];
i--;
}
return i==;
} int main()
{
// ios::sync_with_stdio(false);
// freopen("in.txt","r",stdin);
int cases=;
while(scanf("%d%d",&n,&m)!=EOF&&(n||m)){
vector<int>ans;
for(int i=;i<=n;i++){
scanf("%d%d",&num1[i],&num2[i]);
sum[i]=num1[i]+num2[i];
diff[i]=num1[i]-num2[i];
}
memset(dp,-,sizeof(dp)); dp[][fix]=;
for(int i=;i<=m;i++){
for(int k=;k<=*fix;k++){
if(dp[i-][k]<){continue;}
for(int j=;j<=n;j++){
if(dp[i][k+diff[j]]<dp[i-][k]+sum[j]&&check(i-,k,j)){
dp[i][k+diff[j]]=dp[i-][k]+sum[j];
path[i][k+diff[j]]=j;
}
}
}
}
int minn=,maxx=;
for(int i=;i<=fix;i++){
// cout<<dp[m][fix-i];
if(dp[m][fix-i]>=||dp[m][fix+i]>=){
minn=i;break;
}
}
int rec=;
if(dp[m][fix-minn]>dp[m][fix+minn]){
rec=fix-minn;
maxx=dp[m][fix-minn];
}
else{
rec=fix+minn;
maxx=dp[m][fix+minn];
}
int ans1,ans2;
ans1=ans2=;
while(m){
ans.push_back(path[m][rec]);
ans1+=num1[path[m][rec]];
ans2+=num2[path[m][rec]];
rec-=diff[path[m][rec]];
m--;
}
cases++;
printf("Jury #%d\n",cases);
printf("Best jury has value %d for prosecution and value %d for defence:\n",ans1,ans2);
sort(ans.begin(),ans.end());
int sz=ans.size();
for(int i=;i<sz;i++){
printf(" %d",ans[i]);
}
printf("\n\n");
} return ;
}

POJ 1015 Jury Compromise(双塔dp)的更多相关文章

  1. POJ 1015 Jury Compromise(dp坑)

    提议:在遥远的国家佛罗布尼亚,嫌犯是否有罪,须由陪审团决定.陪审团是由法官从公众中挑选的.先随机挑选n个人作为陪审团的候选人,然后再从这n个人中选m人组成陪审团.选m人的办法是:控方和辩方会根据对候选 ...

  2. POJ 1015 Jury Compromise【DP】

    罗大神说这题很简单,,,,然而我着实写的很难过... 题目链接: http://acm.hust.edu.cn/vjudge/contest/view.action?cid=110495#proble ...

  3. 背包系列练习及总结(hud 2602 && hdu 2844 Coins && hdu 2159 && poj 1170 Shopping Offers && hdu 3092 Least common multiple && poj 1015 Jury Compromise)

    作为一个oier,以及大学acm党背包是必不可少的一部分.好久没做背包类动规了.久违地练习下-.- dd__engi的背包九讲:http://love-oriented.com/pack/ 鸣谢htt ...

  4. OpenJudge 2979 陪审团的人选 / Poj 1015 Jury Compromise

    1.链接地址: http://bailian.openjudge.cn/practice/2979 http://poj.org/problem?id=1015 2.题目: 总Time Limit: ...

  5. poj 1015 Jury Compromise(背包+方案输出)

    \(Jury Compromise\) \(solution:\) 这道题很有意思,它的状态设得很...奇怪.但是它的数据范围实在是太暴露了.虽然当时还是想了好久好久,出题人设了几个限制(首先要两个的 ...

  6. POJ 1015 Jury Compromise dp分组

    第一次做dp分组的问题,百度的~~ http://poj.org/problem?id=1015 题目大意:在遥远的国家佛罗布尼亚,嫌犯是否有罪,须由陪审团决定.陪审团是由法官从公众中挑选的.先随机挑 ...

  7. poj 1015 Jury Compromise(背包变形dp)

    In Frobnia, a far-away country, the verdicts in court trials are determined by a jury consisting of ...

  8. POJ 1015 Jury Compromise dp

    大致题意: 从n个候选人中选出m个人作为陪审团.为了让陪审团的选择更公平,辩方和控方都为这n个候选人给出了满意度(辩方为D[j],控方为P[j],范围0至20).现在要使得选出的m位候选人的辩方总和与 ...

  9. HDU POJ 1015 Jury Compromise(陪审团的人选,DP)

    题意: 在遥远的国家佛罗布尼亚,嫌犯是否有罪,须由陪审团决定.陪审团是由法官从公众中挑选的.先随机挑选n个人作为陪审团的候选人,然后再从这n个人中选m人组成陪审团.选m人的办法是:控方和辩方会根据对候 ...

随机推荐

  1. win10 家庭版不支持gpedit.msc的解决办法

    win10 家庭版不支持gpedit.msc的解决办法 1.建立一个批处理文件内容如下: @echo off pushd "%~dp0" dir /b %systemroot%\W ...

  2. Linux内存描述之高端内存--Linux内存管理(五)

    1. 内核空间和用户空间 过去,CPU的地址总线只有32位, 32的地址总线无论是从逻辑上还是从物理上都只能描述4G的地址空间(232=4Gbit),在物理上理论上最多拥有4G内存(除了IO地址空间, ...

  3. Python面试笔记三

    1. 类继承 有如下的一段代码: python对象 如何调用类A的show方法了,方法如下: python对象 __class__方法指向了类对象,只用给他赋值类型A,然后调用方法show,但是用完了 ...

  4. HTML5存储技术Storage

    前端存储技术localStorage是永久存储sessionStorage是一次会话存储 localStorage只支持string类型的存储 存进去的所有类型, 取出来之后都变成了string. 一 ...

  5. C#基础知识之静态和非静态

    项目中静态和非静态常被用到,什么时候需要用静态的,什么时候需要使用非静态,以及他们的区别是什么? 一.概述 静态和非静态的不同地方,就是静态从程序一启动就会一直占用内存,而非静态只有在实例化的时候才会 ...

  6. DISK 100% BUSY,谁造成的?(ok)

    iostat等命令看到的是系统级的统计,比如下例中我们看到/dev/sdb很忙,如果要追查是哪个进程导致的I/O繁忙,应该怎么办? # iostat -xd ... Device: rrqm/s wr ...

  7. MySQL之初识数据库

    一 数据库管理软件的由来 基于我们之前所学,数据要想永久保存,都是保存于文件中,毫无疑问,一个文件仅仅只能存在于某一台机器上. 如果我们暂且忽略直接基于文件来存取数据的效率问题,并且假设程序所有的组件 ...

  8. ubuntu系统下mysql重置密码和修改密码操作

    一.忘记密码后想重置密码 在介绍修改密码之前,先介绍一个文件/etc/mysql/debian.cnf.其主要内容如下图: 里面有一个debian-sys-maint用户,这个用户只有Debian或U ...

  9. 错误:set Assigning an instance of 'esri.***' which is not a subclass of 'esri.***‘

    1.    出现 set Assigning an instance of 'esri.***' which is not a subclass of 'esri.***‘的错误原因 是 因为没有找见 ...

  10. Vue slot插槽内容分发

    slot插槽使用 使用场景,一般父组件中又一大段模板内容需要运用到子组件上.或者更加复杂的,子组件需要运用到父组件大段模板内容,而子组件却不知道挂载的内容是什么.挂载点的内容是由父组件来决定的. Sl ...