「POJ2891」Strange Way to Express Integers【数学归纳法,扩展中国剩余定理】
题目链接
题目描述
给你\(a_1...a_n\)和\(m_1...m_n\),求一个最小的正整数\(x\),满足\(\forall i\in[1,n] \equiv a_i(mod \ mi)\)。
分析
很显然,中国剩余定理无法解决\(m_i\)之间非互质的问题。
需要用\(exCRT\)。
假设\(x\)是前\(k-1\)个方程推出来的答案,那么第一个方程可以直接得出自己的答案就是\(a_1\)。
设\(M=lcm(m_1,m_2...m_{k-1})\),那么显然得到\(x+i\times M\)为前\(k-1\)个方程的通解。
考虑到第\(k\)个我们的现在要求的方程。
那么答案就是\(x+t\times M\equiv a_k(mod \ m_k)\)
发现这个方程中只有一个未知数\(t\),那么只需要用扩欧来算出最小解就可以了。
代码
#include <cstdio>
#include <cstring>
#define ll long long
#define inf 0x3f3f3f3f
using namespace std;
template <typename T> T power(T x, T y, T mod) { x %= mod; T res = 1; for (; y; y >>= 1) { if (y & 1) res = (res * x) % mod; x = (x * x) % mod; } return res; }
template <typename T> void read(T &x) {
x = 0; T fl = 1; char ch = 0;
for (; ch < '0' || ch > '9'; ch = getchar()) if (ch == '-') fl = -1;
for (; ch >= '0' && ch <= '9'; ch = getchar()) x = (x << 1) + (x << 3) + (ch ^ 48);
x *= fl;
}
template <typename T> void write(T x) {
if (x < 0) x = -x, putchar('-');
if (x > 9) write(x / 10); putchar(x % 10 + '0');
}
template <typename T> void writeln(T x) { write(x); puts(""); }
ll a[10005], m[10005], M = 1ll, ans = inf * 1ll, x, y;
int n;
ll gcd(ll a, ll b) { return b == 0? a: gcd(b, a % b); }
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) { x = 1; y = 0; return a; }
ll d = exgcd(b, a % b, x, y), z = x; x = y; y = z - y * (a / b);
return d;
}
ll inv(ll a, ll b) {
ll x, y; ll d = exgcd(a, b, x, y);
return d == 1 ? (x % b + b) % b : -1;
}
ll CRT(ll *m, ll *a, int n) {
ll x = a[1], M = m[1];
for (int i = 2; i <= n; i ++) {
ll c = a[i] - x, d = gcd(M, m[i]);
if (c % d) return -1;
ll k = (c / d) * inv(M / d, m[i] / d) % (m[i] / d);
x += k * M; M *= m[i] / d;
}
return (x % M + M) % M;
}
int main() {
while (~scanf("%d", &n)) {
for (int i = 1; i <= n; i ++) read(m[i]), read(a[i]);
ll res = CRT(m, a, n);
writeln(res);
}
return 0;
}
「POJ2891」Strange Way to Express Integers【数学归纳法,扩展中国剩余定理】的更多相关文章
- POJ2891 Strange Way to Express Integers【扩展中国剩余定理】
题目大意 就是模板...没啥好说的 思路 因为模数不互质,所以直接中国剩余定理肯定是不对的 然后就考虑怎么合并两个同余方程 \(ans = a_1 + x_1 * m_1 = a_2 + x_2 * ...
- poj 2891 Strange Way to Express Integers【扩展中国剩余定理】
扩展中国剩余定理板子 #include<iostream> #include<cstdio> using namespace std; const int N=100005; ...
- POJ-2891 Strange Way to Express Integers(拓展中国剩余定理)
放一个写的不错的博客:https://www.cnblogs.com/zwfymqz/p/8425731.html POJ好像不能用__int128. #include <iostream> ...
- 【POJ2891】Strange Way to Express Integers(拓展CRT)
[POJ2891]Strange Way to Express Integers(拓展CRT) 题面 Vjudge 板子题. 题解 拓展\(CRT\)模板题. #include<iostream ...
- 【poj2891】 Strange Way to Express Integers
http://poj.org/problem?id=2891 (题目链接) 题意 求解线性同余方程组,不保证模数一定两两互质. Solotion 一般模线性方程组的求解,详情请见:中国剩余定理 细节 ...
- 【poj2891】Strange Way to Express Integers
题意: 给出n个模方程x=a(mod r) 求x的最小解 题解: 这就是个线性模方程组的模版题- - 但是有一些要注意的地方 extgcd算出来的解x可能负数 要让x=(x%mo+mo)%mo 而且 ...
- POJ2891:Strange Way to Express Integers(解一元线性同余方程组)
写一下自己的理解,下面附上转载的:若a==b(modk);//这里的==指的是同余,我用=表示相等(a%k=b)a-b=kt(t为整数)以前理解的错误思想:以前认为上面的形式+(a-tb=k)也是成立 ...
- POJ2891:Strange Way to Express Integers——题解
http://poj.org/problem?id=2891 题目大意: k个不同的正整数a1,a2,...,ak.对于一些非负m,满足除以每个ai(1≤i≤k)得到余数ri.求出最小的m. 输入和输 ...
- POJ 2891 Strange Way to Express Integers【扩展欧几里德】【模线性方程组】
求解方程组 X%m1=r1 X%m2=r2 .... X%mn=rn 首先看下两个式子的情况 X%m1=r1 X%m2=r2 联立可得 m1*x+m2*y=r2-r1 用ex_gcd求得一个特解x' ...
随机推荐
- 腾讯云centos7远程连接配置
1.申请腾讯云 注册腾讯云账号,申请一个centos7的服务器,1G内存,1核处理器,1M网速. 对于这种入门级配置,建议还是别用windows server了,不然不装任何东西,光运行系统就需要60 ...
- 作为开发人员,这四类Code Review方法你都知道吗?
本文翻译自:https://dzone.com/articles/4-types-of-code-reviews-any-professional-developer 转载请注明出处:葡萄城官网,葡萄 ...
- Spark SQL,如何将 DataFrame 转为 json 格式
今天主要介绍一下如何将 Spark dataframe 的数据转成 json 数据.用到的是 scala 提供的 json 处理的 api. 用过 Spark SQL 应该知道,Spark dataf ...
- 彻底删除mysql服务(清理注册表)
由于安装某个项目的执行文件,提示要卸载MySQL以便它自身MySQL安装,然后我禁用了MYSQL服务,再把这个文件夹删除后,发现还是提示请卸载MYSQL服务. 解决步骤: 1.以管理员身份运行命令提示 ...
- Asp.net Core应用程序部署为服务
安装前使用dotnet命令运行下看网站能不能正常运行 1.下载nssm,下载后解压文件 下载地址:https://nssm.cc/usage 2.使用命令行工具进入到nssm的目录: 3.执行服务安装 ...
- php+qrcode类+生成二维码方法
//生成二维码 public function qrcode() { $data = input(); if(!$data['param']){ return json(['code ' => ...
- 网络威胁实时地图(CyberThread Real-time Map)
今天跟大家分享一下网络威胁实时地图(CyberThread Real-time Map),从地图上可以看出目前网络威胁情况数据. 点击打开网络威胁实时地图 可以点击demo on/off来看演示.可以 ...
- DRF 序列化器-Serializer (2)
作用 1. 序列化,序列化器会把模型对象转换成字典,经过response以后变成json字符串 2. 完成数据校验功能 3. 反序列化,把客户端发送过来的数据,经过request以后变成字典,序列化器 ...
- Python爬虫【实战篇】百度翻译
先看代码 import requests headers = { "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS ...
- vue 应用生产环境的 webpack 打包配置优化
转:https://blog.csdn.net/robin_star_/article/details/83856363 前言:很好的打包优化的帖子,还没来的急去实测验证 1. 去掉 console ...