Plotly Express 是一个新的高级 Python 可视化库:它是 Plotly.py 的高级封装,它为复杂的图表提供了一个简单的语法。 受 Seaborn 和 ggplot2 的启发,它专门设计为具有简洁,一致且易于学习的 API :只需一次导入,您就可以在一个函数调用中创建丰富的交互式绘图,包括分面绘图(faceting)、地图、动画和趋势线。 它带有数据集、颜色面板和主题,就像 Plotly.py 一样。Plotly Express 完全免费:凭借其宽松的开源 MIT 许可证,您可以随意使用它(是的,甚至在商业产品中!)。 最重要的是,Plotly Express 与 Plotly 生态系统的其他部分完全兼容:在您的 Dash 应用程序中使用它,使用 Orca 将您的数据导出为几乎任何文件格式,或使用JupyterLab 图表编辑器在 GUI 中编辑它们!

用 pip install plotly_express 命令可以安装 Plotly Express。

使用 Plotly Express 轻松地进行数据可视化

一旦导入Plotly Express(通常是 px ),大多数绘图只需要一个函数调用,接受一个整洁的Pandas dataframe,并简单描述你想要制作的图。 如果你想要一个基本的散点图,它只是px.scatter(data,x =“column_name”,y =“column_name”)。

以下是 内置的 Gapminder 数据集 的示例,显示2007年按国家/地区的人均预期寿命和人均GDP 之间的趋势:

 

 

如果你想通过大陆区分它们,你可以使用 color 参数为你的点着色,由 px 负责设置默认颜色,设置图例等:

 

这里的每一点都是一个国家,所以也许我们想要按国家人口来衡量这些点...... 没问题:这里也有一个参数来设置,它被称为 size:

 

如果你好奇哪个国家对应哪个点? 可以添加一个 hover_name ,您可以轻松识别任何一点:只需将鼠标放在您感兴趣的点上即可! 事实上,即使没有 hover_name ,整个图表也是互动的:

 

也可以通过 facet_col =”continent“ 来轻松划分各大洲,就像着色点一样容易,并且让我们使用 x轴 对数(log_x)以便在我们在图表中看的更清晰:

 

也许你不仅仅对 2007年 感兴趣,而且你想看看这张图表是如何随着时间的推移而演变的。 可以通过设置 animation_frame =“year” (以及 animation_group =“country” 来标识哪些圆与控制条中的年份匹配)来设置动画。 在这个最终版本中,让我们在这里调整一些显示,因为像“gdpPercap” 这样的文本有点难看,即使它是我们的数据框列的名称。 我们可以提供更漂亮的“标签” (labels),可以在整个图表、图例、标题轴和悬停(hovers)中应用。 我们还可以手动设置边界,以便动画在整个过程中看起来更棒:

 

这才是你想要的 Python 可视化神器的更多相关文章

  1. 推荐:这才是你寻寻觅觅想要的 Python 可视化神器

    Plotly Express 是一个新的高级 Python 可视化库:它是 Plotly.py 的高级封装,它为复杂的图表提供了一个简单的语法. 受 Seaborn 和 ggplot2 的启发,它专门 ...

  2. 【转】Python 可视化神器-Plotly Express

    转自:https://mp.weixin.qq.com/s/FNpNJSMK5Vs8pwi0PbbBzw 说明:图片无法直接复制,请查看原文 导读:Plotly Express 是一个新的高级 Pyt ...

  3. 服务器文档下载zip格式 SQL Server SQL分页查询 C#过滤html标签 EF 延时加载与死锁 在JS方法中返回多个值的三种方法(转载) IEnumerable,ICollection,IList接口问题 不吹不擂,你想要的Python面试都在这里了【315+道题】 基于mvc三层架构和ajax技术实现最简单的文件上传 事件管理

    服务器文档下载zip格式   刚好这次项目中遇到了这个东西,就来弄一下,挺简单的,但是前台调用的时候弄错了,浪费了大半天的时间,本人也是菜鸟一枚.开始吧.(MVC的) @using Rattan.Co ...

  4. 你想找的Python资料这里全都有!没有你找不到!史上最全资料合集

    你想找的Python资料这里全都有!没有你找不到!史上最全资料合集 2017年11月15日 13:48:53 技术小百科 阅读数:1931   GitHub 上有一个 Awesome - XXX 系列 ...

  5. 高效使用 Python 可视化工具 Matplotlib

    Matplotlib是Python中最常用的可视化工具之一,可以非常方便地创建海量类型的2D图表和一些基本的3D图表.本文主要介绍了在学习Matplotlib时面临的一些挑战,为什么要使用Matplo ...

  6. 数据分析之---Python可视化工具

    1. 数据分析基本流程 作为非专业的数据分析人员,在平时的工作中也会遇到一些任务:需要对大量进行分析,然后得出结果,解决问题. 所以了解基本的数据分析流程,数据分析手段对于提高工作效率还是非常有帮助的 ...

  7. Python 可视化工具 Matplotlib

    英文出处:Chris Moffitt. Matplotlib是Python中最常用的可视化工具之一,可以非常方便地创建海量类型的2D图表和一些基本的3D图表.本文主要介绍了在学习Matplotlib时 ...

  8. Python可视化库

    转自小小蒲公英原文用Python可视化库 现如今大数据已人尽皆知,但在这个信息大爆炸的时代里,空有海量数据是无实际使用价值,更不要说帮助管理者进行业务决策.那么数据有什么价值呢?用什么样的手段才能把数 ...

  9. 推荐一款Python数据可视化神器

    1. 前言 在日常工作中,为了更直观的发现数据中隐藏的规律,察觉到变量之间的互动关系,人们常常借助可视化帮助我们更好的给他人解释现象,做到一图胜千文的说明效果. 在Python中,常见的数据可视化库有 ...

随机推荐

  1. java Calendar的学习分享

    前言: 在我们的日常生活中,常常能看见时间.如:在我们的手机里,在一些网站上也能随处看到时间.那我们在项目的开发中,也常常涉及到时间的处理,对于我们经常会遇到和处理的问题.Java中专门为我们处理时间 ...

  2. CSS 渐变色

    CSS linear-gradient() 函数 http://www.runoob.com/cssref/func-linear-gradient.html CSS radial-gradient( ...

  3. javascript进阶之AJAX

    AJAX 一 AJAX预备知识:json进阶 1.1 什么是JSON? JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式.JSON是用字符串来表示Javas ...

  4. Python爬取地图瓦片

    由于要在内网开发地图项目,不能访问在线的地图服务了,就想把地图瓦片下载下来,网上找了一些下载器都是需要注册及收费的,否则下载到的图都是打水印的,如下: 因为地图瓦片就是按照层级.行.列规则组织的一张张 ...

  5. grid++报表使用时注意事项

    #开始使用:Grid++Report 可以在 Visual C#.Net 与 Visual Basic.Net 下的 WinForm 项目中使用.在项目中使用 Grid++Report 之前,首先必须 ...

  6. Kotlin入门(31)JSON字符串的解析

    json是App进行网络通信最常见的数据交互格式,Android也自带了json格式的处理工具包org.json,该工具包主要提供了JSONObject(json对象)与JSONArray(json数 ...

  7. Skywalking部署常见问题以及注意事项

    Skywalking部署常见问题以及注意事项 Intro SkyWalking 创建与2015年,提供分布式追踪功能.从5.x开始,项目进化为一个完成功能的Application Performanc ...

  8. MAC MAMP 中安装配置使用 ThinkPHP

    MAMP PRO 是Mac OS X 平台上经典的本地环境应用 MAMP 的专业版.专门为专业的Web开发人员和程序员轻松地安装和管理自己的开发环境. MAMP这几个首字母代表Mac OS X系统上的 ...

  9. Docker 创建 Jira Core(Jira SoftWare) 7.12.3 中文版

    目录 目录 1.介绍 1.1.什么是 JIRA Core? 1.2.什么是 JIRA SoftWare 2.JIRA 的官网在哪里? 3.如何下载安装? 4.对 JIRA 进行配置 4.1.JIRA ...

  10. c#高级编程_第10版 云盘地址

    下载地址 链接:https://pan.baidu.com/s/1u8PcY4RJhRB1yfm-2XaTEQ 密码:159z