Plotly Express 是一个新的高级 Python 可视化库:它是 Plotly.py 的高级封装,它为复杂的图表提供了一个简单的语法。 受 Seaborn 和 ggplot2 的启发,它专门设计为具有简洁,一致且易于学习的 API :只需一次导入,您就可以在一个函数调用中创建丰富的交互式绘图,包括分面绘图(faceting)、地图、动画和趋势线。 它带有数据集、颜色面板和主题,就像 Plotly.py 一样。Plotly Express 完全免费:凭借其宽松的开源 MIT 许可证,您可以随意使用它(是的,甚至在商业产品中!)。 最重要的是,Plotly Express 与 Plotly 生态系统的其他部分完全兼容:在您的 Dash 应用程序中使用它,使用 Orca 将您的数据导出为几乎任何文件格式,或使用JupyterLab 图表编辑器在 GUI 中编辑它们!

用 pip install plotly_express 命令可以安装 Plotly Express。

使用 Plotly Express 轻松地进行数据可视化

一旦导入Plotly Express(通常是 px ),大多数绘图只需要一个函数调用,接受一个整洁的Pandas dataframe,并简单描述你想要制作的图。 如果你想要一个基本的散点图,它只是px.scatter(data,x =“column_name”,y =“column_name”)。

以下是 内置的 Gapminder 数据集 的示例,显示2007年按国家/地区的人均预期寿命和人均GDP 之间的趋势:

 

 

如果你想通过大陆区分它们,你可以使用 color 参数为你的点着色,由 px 负责设置默认颜色,设置图例等:

 

这里的每一点都是一个国家,所以也许我们想要按国家人口来衡量这些点...... 没问题:这里也有一个参数来设置,它被称为 size:

 

如果你好奇哪个国家对应哪个点? 可以添加一个 hover_name ,您可以轻松识别任何一点:只需将鼠标放在您感兴趣的点上即可! 事实上,即使没有 hover_name ,整个图表也是互动的:

 

也可以通过 facet_col =”continent“ 来轻松划分各大洲,就像着色点一样容易,并且让我们使用 x轴 对数(log_x)以便在我们在图表中看的更清晰:

 

也许你不仅仅对 2007年 感兴趣,而且你想看看这张图表是如何随着时间的推移而演变的。 可以通过设置 animation_frame =“year” (以及 animation_group =“country” 来标识哪些圆与控制条中的年份匹配)来设置动画。 在这个最终版本中,让我们在这里调整一些显示,因为像“gdpPercap” 这样的文本有点难看,即使它是我们的数据框列的名称。 我们可以提供更漂亮的“标签” (labels),可以在整个图表、图例、标题轴和悬停(hovers)中应用。 我们还可以手动设置边界,以便动画在整个过程中看起来更棒:

 

这才是你想要的 Python 可视化神器的更多相关文章

  1. 推荐:这才是你寻寻觅觅想要的 Python 可视化神器

    Plotly Express 是一个新的高级 Python 可视化库:它是 Plotly.py 的高级封装,它为复杂的图表提供了一个简单的语法. 受 Seaborn 和 ggplot2 的启发,它专门 ...

  2. 【转】Python 可视化神器-Plotly Express

    转自:https://mp.weixin.qq.com/s/FNpNJSMK5Vs8pwi0PbbBzw 说明:图片无法直接复制,请查看原文 导读:Plotly Express 是一个新的高级 Pyt ...

  3. 服务器文档下载zip格式 SQL Server SQL分页查询 C#过滤html标签 EF 延时加载与死锁 在JS方法中返回多个值的三种方法(转载) IEnumerable,ICollection,IList接口问题 不吹不擂,你想要的Python面试都在这里了【315+道题】 基于mvc三层架构和ajax技术实现最简单的文件上传 事件管理

    服务器文档下载zip格式   刚好这次项目中遇到了这个东西,就来弄一下,挺简单的,但是前台调用的时候弄错了,浪费了大半天的时间,本人也是菜鸟一枚.开始吧.(MVC的) @using Rattan.Co ...

  4. 你想找的Python资料这里全都有!没有你找不到!史上最全资料合集

    你想找的Python资料这里全都有!没有你找不到!史上最全资料合集 2017年11月15日 13:48:53 技术小百科 阅读数:1931   GitHub 上有一个 Awesome - XXX 系列 ...

  5. 高效使用 Python 可视化工具 Matplotlib

    Matplotlib是Python中最常用的可视化工具之一,可以非常方便地创建海量类型的2D图表和一些基本的3D图表.本文主要介绍了在学习Matplotlib时面临的一些挑战,为什么要使用Matplo ...

  6. 数据分析之---Python可视化工具

    1. 数据分析基本流程 作为非专业的数据分析人员,在平时的工作中也会遇到一些任务:需要对大量进行分析,然后得出结果,解决问题. 所以了解基本的数据分析流程,数据分析手段对于提高工作效率还是非常有帮助的 ...

  7. Python 可视化工具 Matplotlib

    英文出处:Chris Moffitt. Matplotlib是Python中最常用的可视化工具之一,可以非常方便地创建海量类型的2D图表和一些基本的3D图表.本文主要介绍了在学习Matplotlib时 ...

  8. Python可视化库

    转自小小蒲公英原文用Python可视化库 现如今大数据已人尽皆知,但在这个信息大爆炸的时代里,空有海量数据是无实际使用价值,更不要说帮助管理者进行业务决策.那么数据有什么价值呢?用什么样的手段才能把数 ...

  9. 推荐一款Python数据可视化神器

    1. 前言 在日常工作中,为了更直观的发现数据中隐藏的规律,察觉到变量之间的互动关系,人们常常借助可视化帮助我们更好的给他人解释现象,做到一图胜千文的说明效果. 在Python中,常见的数据可视化库有 ...

随机推荐

  1. iview-admin框架运行步骤

    第一步: 前往github下载整个iview-admin框架的全部源码 github地址: https://github.com/iview/iview-admin 第二步: 点击Clone or d ...

  2. 一文搞懂TCP与UDP的区别

    摘要:计算机网络基础 引言 网络协议是每个前端工程师都必须要掌握的知识,TCP/IP 中有两个具有代表性的传输层协议,分别是 TCP 和 UDP,本文将介绍下这两者以及它们之间的区别. 一.TCP/I ...

  3. mac下 将python2.7改为python3

    1.查看当前电脑python版本 python -V // 显示2.7.x 2.用brew升级python brew update python 3.如果安装成功,去系统目录下回看到两个版本的pyth ...

  4. 如何解决Dynamics 365的错误:用户身份验证无效,MSIS0006

    关注本人微信和易信公众号: 微软动态CRM专家罗勇 ,回复246或者20170312可方便获取本文,同时可以在第一间得到我发布的最新的博文信息,follow me!我的网站是 www.luoyong. ...

  5. 一句话总结K均值算法

    一句话总结K均值算法 核心:把样本分配到离它最近的类中心所属的类,类中心由属于这个类的所有样本确定. k均值算法是一种无监督的聚类算法.算法将每个样本分配到离它最近的那个类中心所代表的类,而类中心的确 ...

  6. 驰骋工作流引擎JFlow与activiti的对比之2种结构化模式

    1. 任意循环(Arbitrary Cycles) ACTIVITI : 某一个或多个活动可以反复执行. 例子:用户买了瓶汽水,拿到汽水后,中了一瓶,又去兑换了一瓶汽水,如果又中了,再去兑换一瓶汽水- ...

  7. stereoscopic 3D

    色分(Anaglyph)模式:典型的如红蓝立体,是利用红镜片只允许红光通过,蓝镜片只允许蓝光通过的原理,将两幅视差的图片(一张红色.一张蓝色)叠加构成一张立体图片 由于红蓝立体去掉了绿色分量,会导致最 ...

  8. MongoDB副本集及C#程序的连接配置

    1.副本集 高可用是绝大多数数据库管理系统的核心目标之一.如果要想生产数据在发生故障后依然可用,就需要确保为生产数据库多部署一台服务器.MongoDB副本集提供了数据的保护.高可用和灾难恢复的机制. ...

  9. 前后端分离djangorestframework—— 在线视频平台接入第三方加密防盗录视频

    加密视频 在以后的开发项目中,很可能有做在线视频的,而在线视频就有个问题,因为在线播放,就很有可能视频数据被抓包,如果这个在线视频平台有付费视频的话,这样就会有人做点倒卖视频的生意了,针对这个问题,目 ...

  10. 利用ZYNQ SOC快速打开算法验证通路(5)——system generator算法IP导入IP integrator

    一.前言 利用FPGA设计算法一直以来都是热点,同样也是难点.将复杂的数学公式 模型通过硬件系统来搭建,在低延时 高并行性等优势背后极大提高了设计难度和开发周期.Xilinx公司的sysGen(sys ...