In James Munkres “Topology”, the concept for a tuple, which can be \(m\)-tuple, \(\omega\)-tuple or \(J\)-tuple, is defined from a function point of view as below.

Let \(X\) be a set.

  • Let \(m\) be a positive integer and \(\{ 1, \cdots, m \}\) be an index set. An \(m\)-tuple of elements in \(X\) is a function

    \[
    \vect{x}: \{ 1, \cdots, m \} \rightarrow X.
    \]

  • Let \(\mathbb{Z}_+\) be the index set comprised of all positive integers. An \(\omega\)-tuple of elements in \(X\) is a function

    \[
    \vect{x}: \mathbb{Z}_+ \rightarrow X.
    \]

  • Let \(J\) be an index set, whose cardinality is not limited to be finite or infinite, countable or uncountable. A \(J\)-tuple of elements in \(X\) is a function

    \[
    \vect{x}: J \rightarrow X.
    \]

For all these types of tuples, if \(\alpha\) is an index belongs to the index set, the corresponding coordinate component of the tuple is \(\vect{x}(\alpha)\). It is written as \(x_{\alpha}\), which is the form we often use.

From the above it can be seen that a tuple of elements, which are literally tangible data, are viewed as the rule of assignment for a function, which is more abstract. In addition, while we have already been given to the stereotype of a tuple, which is a container holding a list of ordered elements, the function mapping version of a tuple does not require any order relation prescribed for the tuple’s index set.

Considering these concepts in computer programming, a tuple of values or objects can be either stored in an ordered array as in procedural programming. Or the tuple can be stored within a function as in functional programming. Without loss of generality, this functional perspective can be further applied to matrix and tensor, which eliminates or mingles the boundary between data and operation.

A tuple is defined as a function的更多相关文章

  1. tuple built-in function

    tuple tips: 1.对于Python中的tuple类型来说,他与其它的序列类型来讲最大的不同就是tuple是不可变的. 2.当你需要创建一个只有一个元素的tuple时,需要在元祖分隔符里面加一 ...

  2. js中 var functionName = function() {} 和 function functionName() {} 两种函数声明的区别

    js中有两种声明函数的方法,分别为: var functionOne = function() { // Some code }; function functionTwo() { // Some c ...

  3. js中 var functionName = function() {} 和 function functionName() {} 两种函数声明的区别 (译)

    stackOverflow中看到了很久以前问的一个关于函数声明的问题,问题对函数剖析的特别深.这里翻译了一下组织成一篇小博文,加深一下对这两种声明方式的印象.虽是老调重弹,但是只要能帮助理解问题,不管 ...

  4. Function Pointers in C

    来源:https://cs.nyu.edu/courses/spring12/CSCI-GA.3033-014/Assignment1/function_pointers.html Function ...

  5. html调用js提示方法名 is not defined处理方法

    解决办法(方法名 is not defined): dosave=function(){ alert("方法名在前"); } 下面这种写法有时候会出现错误: function do ...

  6. [Javascript] Required function arguments in Javascript

    In Javascript, all function arguments are optional by default. That means if you ever forget to pass ...

  7. [WASM] Create and Run a Native WebAssembly Function

    In this introduction, we show a simple WebAssembly function that returns the square root of a number ...

  8. The Function() Constructor

    Functions are usually defined using the function keyword, either in the form of a function definitio ...

  9. actor concurrency

    The hardware we rely on is changing rapidly as ever-faster chips are replaced by ever-increasing num ...

随机推荐

  1. CentOS_7升级系统内核

    最近,在虚拟机中安装docker成功之后,尝试运行docker run hello-world时出现以下错误: $ sudo docker run hello-world Unable to find ...

  2. 「POJ2891」Strange Way to Express Integers【数学归纳法,扩展中国剩余定理】

    题目链接 [VJ传送门] 题目描述 给你\(a_1...a_n\)和\(m_1...m_n\),求一个最小的正整数\(x\),满足\(\forall i\in[1,n] \equiv a_i(mod ...

  3. mysql慢查询日志按天切割归纳

    问题描述: mysql开启慢查询功能,再正常不过,那么存在这样一种情况:慢查询写入的文件位置和文件名是指定好的,如果慢查询时间设定严苛,不出意外,记录慢查询的单个文件大小会日益增大,几十兆或者上百兆, ...

  4. 转载:ORA-12516 “TNS监听程序找不到符合协议堆栈要求的可用处理程序” 解决方案

    ORA-12516 “TNS监听程序找不到符合协议堆栈要求的可用处理程序” 解决方案   简单描述一下场景,总共两台应用服务器,每台安装3个tomcat进行集群,并通过nginx做了负载均衡,今天在生 ...

  5. 锁(1):spin_lock & mutex_lock的区别? .

    为什么需要内核锁? 多核处理器下,会存在多个进程处于内核态的情况,而在内核态下,进程是可以访问所有内核数据的,因此要对共享数据进行保护,即互斥处理   有哪些内核锁机制? (1)原子操作 atomic ...

  6. SQL注入绕过技巧总结

    1.SQL注入过程中的处理# 终端payload编码------>web服务器解码-------->CGI脚本解码------>web应用解码----->数据库解码 浏览器.代 ...

  7. luoguo 1306 斐波那契公约数

    这题难度不大,主要是小结论:斐波那契第n项和第m项公约数就是第gcd(n,m)项 大概能猜出来,毕竟斐波那契数列反过来实在太像计算公约数的步骤了 日后填坑证明吧

  8. FM(工程实现)

    摘自: https://www.cnblogs.com/AndyJee/p/8032553.html 一.FM模型函数 二.FM对参数求导结果 三.算法实现 主要超参数有:初始化参数.学习率.正则化稀 ...

  9. 使用OpenPop.dll开发读取POP3邮件程序

    1.设置邮件的pop3 以163网易邮箱为例: https://jingyan.baidu.com/article/adc81513804be9f722bf7350.html 2.下载OpenPop. ...

  10. 入门嵌入式选择2440?树莓派?STM32?4412开发板?

    如果了解一下当前IT和物联网发展的形势,就会发现Android工程师越来越受欢迎,相比之下单纯的Linux工程师却逊色不少,当然,Android系统的内核也是Linux的,Linux和Android作 ...