4337: BJOI2015 树的同构
题解:
树的同构的判定
有根树从根开始进行树hash
先把儿子的f进行排序
$f[i]=\sum_{j=1}^{k} { f[j]*prime[j]} +num[i]$(我没有仔细想这样是不是树是唯一的。。。反正过了)
无根树先找到重心再作为根
因为重心最多只有两个,复杂度仍旧O(n)
代码:
#include <bits/stdc++.h>
using namespace std;
#define rint register int
#define IL inline
#define rep(i,h,t) for (int i=h;i<=t;i++)
#define dep(i,t,h) for (int i=t;i>=h;i--)
#define me(x) memset(x,0,sizeof(x))
#define ll long long
#define mep(x,y) memcpy(x,y,sizeof(y))
#define mid ((h+t)>>1)
#define ull unsigned ll
namespace IO{
char ss[<<],*A=ss,*B=ss;
IL char gc()
{
return A==B&&(B=(A=ss)+fread(ss,,<<,stdin),A==B)?EOF:*A++;
}
template<class T>void read(T &x)
{
rint f=,c; while (c=gc(),c<||c>) if (c=='-') f=-; x=(c^);
while (c=gc(),c>&&c<) x=(x<<)+(x<<)+(c^); x*=f;
}
char sr[<<],z[]; int Z,C=-;
template<class T>void wer(T x)
{
if (x<) sr[++C]='-',x=-x;
while (z[++Z]=x%+,x/=);
while (sr[++C]=z[Z],--Z);
}
IL void wer1() { sr[++C]=' ';}
IL void wer2() { sr[++C]='\n';}
template<class T>IL void maxa(T &x,T y) { if (x<y) x=y;}
template<class T>IL void mina(T &x,T y) { if (x>y) x=y;}
template<class T>IL T MAX(T x,T y) {return x>y?x:y;}
template<class T>IL T MIN(T x,T y) {return x<y?x:y;}
};
using namespace IO;
const int N=;
int head[N],n,m,l,num[N],f[N];
struct re{
int a,b;
}e[N*];
bool q[];
int zs[N];
ull son[N][N],ans[N],g[N];
IL void arr(int x,int y)
{
e[++l].a=head[x];
e[l].b=y;
head[x]=l;
}
void fdrt(int x,int y)
{
num[x]=;
for (rint u=head[x];u;u=e[u].a)
{
int v=e[u].b;
if (v!=y)
{
fdrt(v,x);
num[x]+=num[v];
if (num[v]>f[x]) f[x]=num[v];
}
}
if (n-num[x]>f[x]) f[x]=n-num[x];
}
void dfs(int x,int y)
{
num[x]=;
int cnt=;
for (rint u=head[x];u;u=e[u].a)
{
int v=e[u].b;
if (v!=y)
{
dfs(v,x);
son[x][++cnt]=g[v];
num[x]+=num[v];
}
}
sort(son[x]+,son[x]+cnt+);
ull now=;
rep(i,,cnt) now=now+son[x][i]*zs[i];
now+=num[x];
g[x]=now;
}
int main()
{
freopen("1.in","r",stdin);
freopen("1.out","w",stdout);
read(m);
rep(i,,)
for (int j=;j*i<=;j++)
q[i*j]=;
int cnt=;
rep(i,,)
if (!q[i])
{
zs[++cnt]=i;
if (cnt>=) break;
}
rep(j,,m)
{
me(head); read(n); me(f); l=;
rep(i,,n)
{
int x,y; read(x);
if (x) arr(x,i),arr(i,x);
}
fdrt(,);
int ma=1e9;
rep(i,,n) ma=min(ma,f[i]);
rep(i,,n)
if (f[i]==ma)
{
dfs(i,); maxa(ans[j],g[i]);
}
}
rep(i,,m)
rep(j,,m)
if(ans[j]==ans[i])
{
cout<<j<<endl; break;
}
return ;
}
4337: BJOI2015 树的同构的更多相关文章
- BZOJ 4337: BJOI2015 树的同构 树hash
4337: BJOI2015 树的同构 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4337 Description 树是一种很常见的数 ...
- BZOJ.4337.[BJOI2015]树的同构(树哈希)
BZOJ 洛谷 \(Description\) 给定\(n\)棵无根树.对每棵树,输出与它同构的树的最小编号. \(n及每棵树的点数\leq 50\). \(Solution\) 对于一棵无根树,它的 ...
- [BZOJ4337][BJOI2015]树的同构(树的最小表示法)
4337: BJOI2015 树的同构 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1023 Solved: 436[Submit][Status ...
- bzoj4337: BJOI2015 树的同构 树哈希判同构
题目链接 bzoj4337: BJOI2015 树的同构 题解 树哈希的一种方法 对于每各节点的哈希值为hash[x] = hash[sonk[x]] * p[k]; p为素数表 代码 #includ ...
- 【BZOJ4337】BJOI2015 树的同构 括号序列
[BZOJ4337]BJOI2015 树的同构 Description 树是一种很常见的数据结构. 我们把N个点,N-1条边的连通无向图称为树. 若将某个点作为根,从根开始遍历,则其它的点都有一个前驱 ...
- BZOJ4337:[BJOI2015]树的同构——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4337 树是一种很常见的数据结构. 我们把N个点,N-1条边的连通无向图称为树. 若将某个点作为根, ...
- [BJOI2015]树的同构
嘟嘟嘟 判断树的同构的方法就是树上哈希. 如果树是一棵有根树,那么只要从根节点出发dfs,每一个节点的哈希值等于按传统方式算出来的子树的哈希值的结果.需要注意的是,算完子树的哈希值后要先排序再加起来, ...
- BZOJ4337:[BJOI2015]树的同构(树hash)
Description 树是一种很常见的数据结构. 我们把N个点,N-1条边的连通无向图称为树. 若将某个点作为根,从根开始遍历,则其它的点都有一个前驱,这个树就成为有根树. 对于两个树T1和T2,如 ...
- Luogu 5043 【模板】树同构([BJOI2015]树的同构)
BZOJ 4337 简单记录一种树哈希的方法:以$x$为根的子树的哈希值为$\sum_{y \in son(x)}f_y*base_i$,$f_y$表示以$y$为根的树的哈希值,其中$i$表示$f_y ...
随机推荐
- Go语言的通道(2)-缓冲通道
有缓冲的通道相比于无缓冲通道,多了一个缓存的功能,如下图描述的一样: 从图上可以明显看到和无缓冲通道的区别,无缓冲必须两个Goroutine都进入通道才能进行数据的交换,这个不用,如果数据有,直接就能 ...
- jQUERY中的属性获取
jQuery获取Select选择的Text和Value:语法解释:1. $("#select_id").change(function(){//code...}); //为Se ...
- Java连接远程Mysql过程中遇到的各种问题
2018-11-16 10:46 2018-11-19 21:35 前言 本篇文章记录的是本人在使用Java程序连接另一台电脑(同一局域网)上的Mysql数据库的过程中遇到的各种问题及解决方案.希望能 ...
- node安装express-generator脚手架
参考网址:https://www.jianshu.com/p/b555ba6f4067 全局安装: npm install express-generator -g 创建项目pro_test expr ...
- 集成Tomcat环境到Eclipse中
集成Tomcat环境到Eclipse中 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.安装Eclipse环境 1>.安装JDK环境 官方地址:https://www.or ...
- kubernetes云平台管理实战: pod资源共享(三)
一.共享容器IP地址 1.查看容器进程 [root@k8s-node1 ~]# docker ps -a CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS ...
- RubyMine 2017.3.2破解教程
下载地址:http://www.3322.cc/soft/35519.html RubyMine 2017.3.2破解版是一款专为Ruby和Rails开发者准备的IDE(被誉为最智能的Ruby和Rai ...
- java实现文件的断点续传
java实现文件的断点续传: 依赖: <!--文件上传--> <dependency> <groupId>commons-fileupload</groupI ...
- SQL SERVER 2008 服务器登录名、角色、数据库用户、角色、架构的关系
sql server登录名.服务器角色.数据库用户.数据库角色.架构区别联系 1.一个数据库用户可以对应多个架构(架构是表容器).架构里面包含的是数据库表. 2.一个数据库角色有可能涉及多个架构.数据 ...
- [物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件
写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 ( ...