Mysql百万级数据查询优化
1. 直接用limit start, count分页语句, 也是我程序中用的方法:
select * from product limit start, count
当起始页较小时,查询没有性能问题,我们分别看下从10, 100, 1000, 10000开始分页的执行时间(每页取20条), 如下:
select * from product limit 10, 20 0.016秒
select * from product limit 100, 20 0.016秒
select * from product limit 1000, 20 0.047秒
select * from product limit 10000, 20 0.094秒
我们已经看出随着起始记录的增加,时间也随着增大, 这说明分页语句limit跟起始页码是有很大关系的,那么我们把起始记录改为40w看下(也就是记录的一般左右)
select * from product limit 400000, 20 3.229秒
再看我们取最后一页记录的时间
select * from product limit 866613, 20 37.44秒
难怪搜索引擎抓取我们页面的时候经常会报超时,像这种分页最大的页码页显然这种时
间是无法忍受的。
从中我们也能总结出两件事情:
1)limit语句的查询时间与起始记录的位置成正比
2)mysql的limit语句是很方便,但是对记录很多的表并不适合直接使用。
2. 对limit分页问题的性能优化方法
利用表的覆盖索引来加速分页查询
我们都知道,利用了索引查询的语句中如果只包含了那个索引列(覆盖索引),那么这种情况会查询很快。
因为利用索引查找有优化算法,且数据就在查询索引上面,不用再去找相关的数据地址了,这样节省了很多时间。另外Mysql中也有相关的索引缓存,在并发高的时候利用缓存就效果更好了。
在我们的例子中,我们知道id字段是主键,自然就包含了默认的主键索引。现在让我们看看利用覆盖索引的查询效果如何:
这次我们之间查询最后一页的数据(利用覆盖索引,只包含id列),如下:
select id from product limit 866613, 20 0.2秒
相对于查询了所有列的37.44秒,提升了大概100多倍的速度
那么如果我们也要查询所有列,有两种方法,一种是id>=的形式,另一种就是利用join,看下实际情况:
SELECT * FROM product WHERE ID > =(select id from product limit 866613, 1) limit 20
查询时间为0.2秒,简直是一个质的飞跃啊,哈哈
另一种写法
SELECT * FROM product a JOIN (select id from product limit 866613, 20) b ON a.ID = b.id
查询时间也很短,赞!
其实两者用的都是一个原理嘛,所以效果也差不多
Mysql百万级数据查询优化的更多相关文章
- PHP+MySQL百万级数据插入的优化
插入分析 MySQL中插入一个记录需要的时间由下列因素组成,其中的数字表示大约比例: 连接:(3) 发送查询给服务器:(2) 分析查询:(2) 插入记录:(1x记录大小) 插入索引:(1x索引) 关闭 ...
- Mysql百万级数据索引重新排序
参考https://blog.csdn.net/pengshuai007/article/details/86021689中思路解决自增id重排 方式一 alter table `table_name ...
- MySQL百万级数据分页查询及优化
方法1: 直接使用数据库提供的SQL语句 语句样式: MySQL中,可用如下方法: SELECT * FROM 表名称 LIMIT M,N 适应场景: 适用于数据量较少的情况(元组百/千级) 原因/缺 ...
- MySQL 百万级数据量分页查询方法及其优化
方法1: 直接使用数据库提供的SQL语句 语句样式: MySQL中,可用如下方法: SELECT * FROM 表名称 LIMIT M,N 适应场景: 适用于数据量较少的情况(元组百/千级) 原因/缺 ...
- (转)mysql百万级以上查询优化
1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索 ...
- mysql百万级数据分页查询缓慢优化-实战
作为后端攻城狮,在接到分页list需求的时候,内心是这样的 画面是这样的 代码大概是这样的 select count(id) from … 查出总数 select * from …. li ...
- Mysql百万数据量级数据快速导入Redis
前言 随着系统的运行,数据量变得越来越大,单纯的将数据存储在mysql中,已然不能满足查询要求了,此时我们引入Redis作为查询的缓存层,将业务中的热数据保存到Redis,扩展传统关系型数据库的服务能 ...
- Sql Server中百万级数据的查询优化
原文:Sql Server中百万级数据的查询优化 万级别的数据真的算不上什么大数据,但是这个档的数据确实考核了普通的查询语句的性能,不同的书写方法有着千差万别的性能,都在这个级别中显现出来了,它不仅考 ...
- 提高MYSQL百万条数据的查询速度
提高MYSQL百万条数据的查询速度 1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 nul ...
随机推荐
- Java实现 蓝桥杯VIP 算法提高 笨小猴
算法提高 笨小猴 时间限制:1.0s 内存限制:256.0MB 问题描述 笨小猴的词汇量很小,所以每次做英语选择题的时候都很头疼.但是他找到了一种方法,经试验证明,用这种方法去选择选项的时候选对的几率 ...
- Java GUI 鼠标事件
import java.awt.Button; import java.awt.FlowLayout; import java.awt.Frame; import java.awt.event.Mou ...
- Java实现第十届蓝桥杯最大降雨量
试题 E: 最大降雨量 本题总分:15 分 [问题描述] 由于沙之国长年干旱,法师小明准备施展自己的一个神秘法术来求雨. 这个法术需要用到他手中的 49 张法术符,上面分别写着 1 至 49 这 49 ...
- 恕我直言,我怀疑你并不会用 Java 枚举
开门见山地说吧,enum(枚举)是 Java 1.5 时引入的关键字,它表示一种特殊类型的类,默认继承自 java.lang.Enum. 为了证明这一点,我们来新建一个枚举 PlayerType: p ...
- 制作zipkin docker镜像
这里使用的zipkin知识基于内存的版本,没有接入外部存储 https://zipkin.io/ https://github.com/openzipkin/zipkin https://github ...
- 微信小程序 简单获取屏幕视口高度
由于小程序的宽度是固定的 750rpx,我们可以先用wx.getSystemInfo 来获取可使用窗口的宽高(并非rpx),结合750rpx的宽度算出比例,再用比例来算出高度 let that = t ...
- uni-app动态修改顶部导航栏标题
动态修改顶部导航栏标题有两种方法方式一.使用自定义到导航栏,覆盖原生导航栏 缺点:自定义到导航栏性能远远不如原生导航栏,手机顶部状态栏区域会被页面内容覆盖,这是因为窗体是沉浸式的原因,即全屏可写内容: ...
- Pants On Fire(链式前向星存图、dfs)
Pants On Fire 传送门:链接 来源:upc9653 题目描述 Donald and Mike are the leaders of the free world and haven't ...
- Deno 初探
前言 Deno 已经被前端圈子提及有很长一段时间了,上个月 Deno 发布了 1.0 版本,又掀起了一小股 Deno 热.Deno 到底是什么?它可以用来做什么呢?它好用吗?带着一直以来的好奇心,趁着 ...
- Py中去除列表中小于某个数的值
### Py去除列表中小于某个数的值 print('*'*10,'Py去除列表中小于某个数的值','*'*10) nums = [2,3,4,10,9,11,19,14] print('*'*10,' ...