1、上次介绍了一点点numpy的操作,今天我们来介绍它如何用多维数组操作图片,这之前我们要了解一下色彩是由blue ,green ,red 三种颜色混合而成,0:表示黑色 ,127:灰色 ,255:白色   ;接下来我们还是来看代码:

 import cv2 as cv
import numpy as np def access_piexls(image):
print(image.shape) #获取图像的形状大小
height=image.shape[0] #图像的第一维度高度
width=image.shape[1] #图像的第二维度宽度
channels=image.shape[2] #图像的第三维度通道数
print("height : %s , width :%s , channels: %s"%(height,width,channels))
for row in range(height):
for col in range(width):
for c in range(channels):
pv=image[row,col,c] #一个三维数组,来获取每个维度的值
image[row,col,c]=255-pv #修改它的颜色显示
cv.imshow("hhhh",image)
src=cv.imread("D:\hh.JPG") #blue green red 色彩通道,这是基本的色彩构成,后面会学到 0:表示黑色 255:表示白色 cv.namedWindow('input image',0)
cv.imshow('input image',src)
t1=cv.getTickCount() #获取当前cpu转动的时间
22 access_piexls(src)
t2=cv.getTickCount()
print("time : %s ms" %((t2-t1)/cv.getTickFrequency()*1000)) #计算走了多少秒
cv.waitKey(-1)
cv.destoryAllWindows()

最终实现的效果如下(我们可以看到cpu 显示这这张修改后的照片时间是9秒左右,同时照片的颜色也被改变了):

2、接下来我们我可以在这个基础上创建出一张新的照片来:

 import cv2 as cv
import numpy as np def access_piexls(image):
print(image.shape) #获取图像的形状大小
height=image.shape[0] #图像的第一维度高度
width=image.shape[1] #图像的第二维度宽度
channels=image.shape[2] #图像的第三维度通道数
print("height : %s , width :%s , channels: %s"%(height,width,channels))
for row in range(height):
for col in range(width):
for c in range(channels):
pv=image[row,col,c] #一个三维数组,来获取每个维度的值
image[row,col,c]=255-pv #修改它的颜色显示
cv.imshow("hhhh",image)
def creat_image():
img = np.zeros([400,400,3],np.uint8) #全zeros时 创建一个图片,高为400,宽为400,三个色彩通道矩阵图像 类型为uint8,这个时候我们还没有对图片进行颜色改变
cv.imshow("new_img", img) src=cv.imread("D:\hh.JPG") #blue green red 色彩通道,这是基本的色彩构成,后面会学到 0:表示黑色 255:表示白色 cv.namedWindow('input image',0)
cv.imshow('input image',src)
t1=cv.getTickCount() #获取当前cpu转动的时间
#access_piexls(src)
creat_image()
t2=cv.getTickCount()
print("time : %s ms" %((t2-t1)/cv.getTickFrequency()*1000)) #计算走了多少秒
cv.waitKey(-1)
cv.destoryAllWindows()

最终效果是一张黑色的照片:

3、接下来我们把这张新建的黑色照片,对它进行颜色操作,把它改成blue,也就是对颜色第一颜色通道进行多维数组操作(当然你也可以对其两个颜色通道进行修改):

 import cv2 as cv
import numpy as np def access_piexls(image):
print(image.shape) #获取图像的形状大小
height=image.shape[0] #图像的第一维度高度
width=image.shape[1] #图像的第二维度宽度
channels=image.shape[2] #图像的第三维度通道数
print("height : %s , width :%s , channels: %s"%(height,width,channels))
for row in range(height):
for col in range(width):
for c in range(channels):
pv=image[row,col,c] #一个三维数组,来获取每个维度的值
image[row,col,c]=255-pv #修改它的颜色显示
cv.imshow("hhhh",image)
def creat_image():
img = np.zeros([400,400,3],np.uint8) #全zeros时 创建一个图片,高为400,宽为400,三个色彩通道矩阵图像 类型为uint8,这个时候我们还没有对图片进行颜色改变
img[: , : , 0]=np.ones([400,400])*255 #修改第一通道的颜色为blue 对第一个颜色通道操作
cv.imshow("new_img", img) src=cv.imread("D:\hh.JPG") #blue green red 色彩通道,这是基本的色彩构成,后面会学到 0:表示黑色 255:表示白色 cv.namedWindow('input image',0)
cv.imshow('input image',src)
t1=cv.getTickCount() #获取当前cpu转动的时间
#access_piexls(src)
creat_image()
t2=cv.getTickCount()
print("time : %s ms" %((t2-t1)/cv.getTickFrequency()*1000)) #计算走了多少秒
cv.waitKey(-1)
cv.destoryAllWindows()

4、单通道操作,更加简单:

 import cv2 as cv
import numpy as np def creat_image():
img = np.ones([400,400,3],np.uint8)
img=img * 0
cv.imshow("new_img", img) cv.waitKey(-1)
cv.destoryAllWindows()

5、填充操作(当我们把创建的图片大小取小一点的话,我可以用fill(进行填充操作):

 import cv2 as cv
import numpy as np def creat_image():
m1 = np.ones([3,3],np.uint8)
m1.fill(122)
print(m1) m2=m1.reshape([1,9]) #把一行分为9列
print(m2) src=cv.imread("D:\hh.JPG") #blue green red 色彩通道,这是基本的色彩构成,后面会学到 0:表示黑色 255:表示白色 cv.namedWindow('input image',0)
cv.imshow('input image',src)
t1=cv.getTickCount() #获取当前cpu转动的时间
#access_piexls(src)
creat_image()
t2=cv.getTickCount()
print("time : %s ms" %((t2-t1)/cv.getTickFrequency()*1000)) #计算走了多少秒
cv.waitKey(-1)
cv.destoryAllWindows()

6、接下来用bitwise_not()函数实现像素取反,这样操作后读取照片的时间就非常快了:

 import cv2 as cv
import numpy as np
#进行像素取反操作,可以使读取照片的速度加快 def inverse(img):
dst=cv.bitwise_not(img)
cv.imshow("取反",dst)
src=cv.imread("D:\hh.JPG") #blue green red 色彩通道,这是基本的色彩构成,后面会学到 0:表示黑色 255:表示白色 cv.namedWindow('input image',0)
cv.imshow('input image',src)
t1=cv.getTickCount() #获取当前cpu转动的时间
#access_piexls(src)
inverse(src)
t2=cv.getTickCount()
print("time : %s ms" %((t2-t1)/cv.getTickFrequency()*1000)) #计算走了多少秒
cv.waitKey(-1)
cv.destoryAllWindows()

以上就是今天所学的东西了,就分享到这里了,睡觉了,现在是凌晨12:36,。

利用numpy实现多维数组操作图片的更多相关文章

  1. Python数据分析 | Numpy与1维数组操作

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/33 本文地址:http://www.showmeai.tech/article-det ...

  2. NumPy之:ndarray多维数组操作

    NumPy之:ndarray多维数组操作 目录 简介 创建ndarray ndarray的属性 ndarray中元素的类型转换 ndarray的数学运算 index和切片 基本使用 index wit ...

  3. Numpy 笔记: 多维数组的切片(slicing)和索引(indexing)【转】

    目录 切片(slicing)操作 索引(indexing) 操作 最简单的情况 获取多个元素 切片和索引的同异 切片(slicing)操作 Numpy 中多维数组的切片操作与 Python 中 lis ...

  4. matlab学习笔记11_1低维数组操作

    一起来学matlab-matlab学习笔记11 11_1 低维数组操作repmat函数,cat函数,diag函数 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考书籍 <matlab ...

  5. 初识numpy的多维数组对象ndarray

    PS:内容来源于<利用Python进行数据分析> 一.创建ndarray 1.array :将一个序列(嵌套序列)转换为一个数组(多维数组) In[2]: import numpy as ...

  6. python的二维数组操作

    需要在程序中使用二维数组,网上找到一种这样的用法: ? 1 2 3 4 5 6 #创建一个宽度为3,高度为4的数组 #[[0,0,0], # [0,0,0], # [0,0,0], # [0,0,0] ...

  7. 什么是二维数组?二维遍历?Java二维数组制作图片迷宫 使用如鹏游戏引擎制作窗口界面 附带压缩包下载,解压后双击start.bat启动

    什么是二维数组? 数组当中放的还是数组 int [][] arr=new int[3][2]; 有3个小箱子,每个箱子2个格子. 看结果? int [][] arr=new int[3][2]; Sy ...

  8. numpy中多维数组的绝对索引

    这涉及到吧多维数组映射为一维数组. 对于3维数组,有公式: def MAP(x,y,z): return y_s * z_s * x + z_s * y + z 此公式可以推广到N维 测试代码:(两个 ...

  9. 06-01 Java 二维数组格式、二维数组内存图解、二维数组操作

    二维数组格式1 /* 二维数组:就是元素为一维数组的一个数组. 格式1: 数据类型[][] 数组名 = new 数据类型[m][n]; m:表示这个二维数组有多少个一维数组. n:表示每一个一维数组的 ...

随机推荐

  1. Web_jQuery

    第1章: jQuery简介 为了简化 JavaScript 的开发,一些 JavsScript 库诞生了. JavaScript库封装了很多预定义的对象和实用函数,简化HTML与JavaScript之 ...

  2. Chrome EC框架探索_0.0_引言

    0.0 引言 嵌入式硬件抽象框架常常面临着这样的尴尬:封装层次较高的(arduino,mbed)不能充分暴露必要的API并面临着性能问题,封装层次较低的(HAL,LL)接口复杂且开发困难.近日发现的一 ...

  3. DOM中获取元素的节点兼容IE6-8封装,带jquery源码分析children

    <ul id="box"> <li>第一个节点</li> <li>第二个节点</li> <li>第三个节点& ...

  4. SFDC 401认证准备及考试

    401认证准备及考试 刚过了401的认证,一些个人的体会,希望能帮助到准备过401的朋友. 1. 考试只是手段,不是目的.这个链接的视频请认真看完,http://www.salesforcetrain ...

  5. 使用Python+OpenCV进行图像处理(二)| 视觉入门

    [前言]图像预处理对于整个图像处理任务来讲特别重要.如果我们没有进行恰当的预处理,无论我们有多么好的数据也很难得到理想的结果. 本篇是视觉入门系列教程的第二篇.整个视觉入门系列内容如下: 理解颜色模型 ...

  6. 双剑合璧的开源项目Kitty-Cloud

    项目地址 https://github.com/yinjihuan/kitty-cloud 背景 做这个项目主要是想将个人的一些经验通过开源的形式进行输出,不一定能帮到所有人,有感兴趣的朋友可以关注学 ...

  7. C++STL(一)——string类

    STL--string类 初始化 string的赋值 string的连接 string的性质描述 遍历 字符指针和string的转化 查找.替换.交换 字符串的拼接 区间删除. 插入 大小写转换 比较 ...

  8. Java 程序该怎么优化?(实战篇)

    面试官:出现了性能问题,该怎么去排查呢? 程序猿:接口响应那么慢,时间都花到哪里去了? 运维喵:为什么你的应用跑着跑着,CPU 就接近 100%? 分享一些真实生产问题排查故事,看看能否涨姿势,能否 ...

  9. 从春节送祝福谈谈 IO 模型(二)

    上期结合程序员小猿用温奶器给孩子热奶的故事,把面试中常聊的“同步.异步与阻塞.非阻塞有啥区别”简单进行普及. 不过,恰逢春节即将到来,应个景,不妨就通过实现新春送祝福的需求,深入了解一下 Java I ...

  10. Blazor入门笔记(6)-组件间通信

    1.环境 VS2019 16.5.1.NET Core SDK 3.1.200Blazor WebAssembly Templates 3.2.0-preview2.20160.5 2.简介 在使用B ...