利用numpy实现多维数组操作图片
1、上次介绍了一点点numpy的操作,今天我们来介绍它如何用多维数组操作图片,这之前我们要了解一下色彩是由blue ,green ,red 三种颜色混合而成,0:表示黑色 ,127:灰色 ,255:白色 ;接下来我们还是来看代码:
import cv2 as cv
import numpy as np def access_piexls(image):
print(image.shape) #获取图像的形状大小
height=image.shape[0] #图像的第一维度高度
width=image.shape[1] #图像的第二维度宽度
channels=image.shape[2] #图像的第三维度通道数
print("height : %s , width :%s , channels: %s"%(height,width,channels))
for row in range(height):
for col in range(width):
for c in range(channels):
pv=image[row,col,c] #一个三维数组,来获取每个维度的值
image[row,col,c]=255-pv #修改它的颜色显示
cv.imshow("hhhh",image)
src=cv.imread("D:\hh.JPG") #blue green red 色彩通道,这是基本的色彩构成,后面会学到 0:表示黑色 255:表示白色 cv.namedWindow('input image',0)
cv.imshow('input image',src)
t1=cv.getTickCount() #获取当前cpu转动的时间
22 access_piexls(src)
t2=cv.getTickCount()
print("time : %s ms" %((t2-t1)/cv.getTickFrequency()*1000)) #计算走了多少秒
cv.waitKey(-1)
cv.destoryAllWindows()
最终实现的效果如下(我们可以看到cpu 显示这这张修改后的照片时间是9秒左右,同时照片的颜色也被改变了):

2、接下来我们我可以在这个基础上创建出一张新的照片来:
import cv2 as cv
import numpy as np def access_piexls(image):
print(image.shape) #获取图像的形状大小
height=image.shape[0] #图像的第一维度高度
width=image.shape[1] #图像的第二维度宽度
channels=image.shape[2] #图像的第三维度通道数
print("height : %s , width :%s , channels: %s"%(height,width,channels))
for row in range(height):
for col in range(width):
for c in range(channels):
pv=image[row,col,c] #一个三维数组,来获取每个维度的值
image[row,col,c]=255-pv #修改它的颜色显示
cv.imshow("hhhh",image)
def creat_image():
img = np.zeros([400,400,3],np.uint8) #全zeros时 创建一个图片,高为400,宽为400,三个色彩通道矩阵图像 类型为uint8,这个时候我们还没有对图片进行颜色改变
cv.imshow("new_img", img) src=cv.imread("D:\hh.JPG") #blue green red 色彩通道,这是基本的色彩构成,后面会学到 0:表示黑色 255:表示白色 cv.namedWindow('input image',0)
cv.imshow('input image',src)
t1=cv.getTickCount() #获取当前cpu转动的时间
#access_piexls(src)
creat_image()
t2=cv.getTickCount()
print("time : %s ms" %((t2-t1)/cv.getTickFrequency()*1000)) #计算走了多少秒
cv.waitKey(-1)
cv.destoryAllWindows()
最终效果是一张黑色的照片:

3、接下来我们把这张新建的黑色照片,对它进行颜色操作,把它改成blue,也就是对颜色第一颜色通道进行多维数组操作(当然你也可以对其两个颜色通道进行修改):
import cv2 as cv
import numpy as np def access_piexls(image):
print(image.shape) #获取图像的形状大小
height=image.shape[0] #图像的第一维度高度
width=image.shape[1] #图像的第二维度宽度
channels=image.shape[2] #图像的第三维度通道数
print("height : %s , width :%s , channels: %s"%(height,width,channels))
for row in range(height):
for col in range(width):
for c in range(channels):
pv=image[row,col,c] #一个三维数组,来获取每个维度的值
image[row,col,c]=255-pv #修改它的颜色显示
cv.imshow("hhhh",image)
def creat_image():
img = np.zeros([400,400,3],np.uint8) #全zeros时 创建一个图片,高为400,宽为400,三个色彩通道矩阵图像 类型为uint8,这个时候我们还没有对图片进行颜色改变
img[: , : , 0]=np.ones([400,400])*255 #修改第一通道的颜色为blue 对第一个颜色通道操作
cv.imshow("new_img", img) src=cv.imread("D:\hh.JPG") #blue green red 色彩通道,这是基本的色彩构成,后面会学到 0:表示黑色 255:表示白色 cv.namedWindow('input image',0)
cv.imshow('input image',src)
t1=cv.getTickCount() #获取当前cpu转动的时间
#access_piexls(src)
creat_image()
t2=cv.getTickCount()
print("time : %s ms" %((t2-t1)/cv.getTickFrequency()*1000)) #计算走了多少秒
cv.waitKey(-1)
cv.destoryAllWindows()

4、单通道操作,更加简单:
import cv2 as cv
import numpy as np def creat_image():
img = np.ones([400,400,3],np.uint8)
img=img * 0
cv.imshow("new_img", img) cv.waitKey(-1)
cv.destoryAllWindows()
5、填充操作(当我们把创建的图片大小取小一点的话,我可以用fill(进行填充操作):
import cv2 as cv
import numpy as np def creat_image():
m1 = np.ones([3,3],np.uint8)
m1.fill(122)
print(m1) m2=m1.reshape([1,9]) #把一行分为9列
print(m2) src=cv.imread("D:\hh.JPG") #blue green red 色彩通道,这是基本的色彩构成,后面会学到 0:表示黑色 255:表示白色 cv.namedWindow('input image',0)
cv.imshow('input image',src)
t1=cv.getTickCount() #获取当前cpu转动的时间
#access_piexls(src)
creat_image()
t2=cv.getTickCount()
print("time : %s ms" %((t2-t1)/cv.getTickFrequency()*1000)) #计算走了多少秒
cv.waitKey(-1)
cv.destoryAllWindows()

6、接下来用bitwise_not()函数实现像素取反,这样操作后读取照片的时间就非常快了:
import cv2 as cv
import numpy as np
#进行像素取反操作,可以使读取照片的速度加快 def inverse(img):
dst=cv.bitwise_not(img)
cv.imshow("取反",dst)
src=cv.imread("D:\hh.JPG") #blue green red 色彩通道,这是基本的色彩构成,后面会学到 0:表示黑色 255:表示白色 cv.namedWindow('input image',0)
cv.imshow('input image',src)
t1=cv.getTickCount() #获取当前cpu转动的时间
#access_piexls(src)
inverse(src)
t2=cv.getTickCount()
print("time : %s ms" %((t2-t1)/cv.getTickFrequency()*1000)) #计算走了多少秒
cv.waitKey(-1)
cv.destoryAllWindows()
以上就是今天所学的东西了,就分享到这里了,睡觉了,现在是凌晨12:36,。
利用numpy实现多维数组操作图片的更多相关文章
- Python数据分析 | Numpy与1维数组操作
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/33 本文地址:http://www.showmeai.tech/article-det ...
- NumPy之:ndarray多维数组操作
NumPy之:ndarray多维数组操作 目录 简介 创建ndarray ndarray的属性 ndarray中元素的类型转换 ndarray的数学运算 index和切片 基本使用 index wit ...
- Numpy 笔记: 多维数组的切片(slicing)和索引(indexing)【转】
目录 切片(slicing)操作 索引(indexing) 操作 最简单的情况 获取多个元素 切片和索引的同异 切片(slicing)操作 Numpy 中多维数组的切片操作与 Python 中 lis ...
- matlab学习笔记11_1低维数组操作
一起来学matlab-matlab学习笔记11 11_1 低维数组操作repmat函数,cat函数,diag函数 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考书籍 <matlab ...
- 初识numpy的多维数组对象ndarray
PS:内容来源于<利用Python进行数据分析> 一.创建ndarray 1.array :将一个序列(嵌套序列)转换为一个数组(多维数组) In[2]: import numpy as ...
- python的二维数组操作
需要在程序中使用二维数组,网上找到一种这样的用法: ? 1 2 3 4 5 6 #创建一个宽度为3,高度为4的数组 #[[0,0,0], # [0,0,0], # [0,0,0], # [0,0,0] ...
- 什么是二维数组?二维遍历?Java二维数组制作图片迷宫 使用如鹏游戏引擎制作窗口界面 附带压缩包下载,解压后双击start.bat启动
什么是二维数组? 数组当中放的还是数组 int [][] arr=new int[3][2]; 有3个小箱子,每个箱子2个格子. 看结果? int [][] arr=new int[3][2]; Sy ...
- numpy中多维数组的绝对索引
这涉及到吧多维数组映射为一维数组. 对于3维数组,有公式: def MAP(x,y,z): return y_s * z_s * x + z_s * y + z 此公式可以推广到N维 测试代码:(两个 ...
- 06-01 Java 二维数组格式、二维数组内存图解、二维数组操作
二维数组格式1 /* 二维数组:就是元素为一维数组的一个数组. 格式1: 数据类型[][] 数组名 = new 数据类型[m][n]; m:表示这个二维数组有多少个一维数组. n:表示每一个一维数组的 ...
随机推荐
- 题解 P3205 【[HNOI2010]合唱队】
讲讲我的做法 看了题目发现要用区间\(dp\),为什么? 我们发现区间\(dp\)有一个性质--大区间包涵小区间,这道题就符合这样的一个性质 所以我们要用区间\(dp\)来解决这道题. 如何设计状态 ...
- 基于 HTML5 WebGL 的 智慧楼宇能源监控系统
前言 21世纪,在能源危机和全球气候变暖的压力下,太阳能等可再生能源越来越受到关注,其中光伏建筑一体化逐渐成为绿色发展方式和生活方式,加强节能降耗,支持低碳产业和新能源.可再生能源发展,也已经成为国家 ...
- F版本SpringCloud 5—Eureka集群和自我保护机制
源码地址:https://gitee.com/bingqilinpeishenme/Java-Tutorials 前言 上篇文章中,通过代码搭建了Eureka注册中心和客户端,是Eureka的简单应用 ...
- ContOS7中使用Nginx进行TCP反向代理
一.安装Nginx 1.下载:http://nginx.org/en/download.html wget http://nginx.org/download/nginx-1.16.1.tar.gz ...
- Convert JS object to JSON string
Modern browsers (IE8, FF3, Chrome etc.) have native JSON support built in (Same API as with JSON2). ...
- 给rm命令加保险
众所周知,脑残可以学习,但是手残没法治.相信每一位喜欢用终端操作电脑的同学都曾手误使用 rm 命令把不该删除的文件删了.然而,使用 rm 删除的文件是不会进去回收站的. 所以,最好的方法就是我们自定义 ...
- Python第六章-函数04-递归函数和拉姆达表达式
五.递归函数 什么叫递归(recusive)? 你拿两个镜子互相面对着, 然后去看镜子, 会发现每个镜子中很多个镜子, 层层的嵌套, 无穷尽, 这就是一种递归! 从前有坐山, 山里有座庙, 庙里有个老 ...
- 推荐|近期热点机器学习git项目
No1: InterpretML by Microsoft--Machine Learning Interpretability github地址:https://github.com/microso ...
- POJ - 3468 线段树单点查询,单点修改区间查询,区间修改模板(求和)
题意: 给定一个数字n,表示这段区间的总长度.然后输入n个数,然后输入q,然后输入a,b,表示查询a,b,区间和,或者输入c 再输入三个数字a,b,c,更改a,b区间为c 思路: 线段树首先就是递归建 ...
- Java 获取 IP
/** * 获取访问者IP. * 在一般情况下使用 Request.getRemoteAddr() 即可,但是经过 nginx 等反向代理软件后,这个方法会失效. */ private String ...