Thinking in Java,Fourth Edition(Java 编程思想,第四版)学习笔记(九)之Interfaces
Interfaces and abstract classes provide more structured way to separate interface from implementation.
the abstract class, which is a kind of midway step between an ordinary class and an interface.
Abstract classes and methods
abstract void f();
A class containing abstract methods is called an abstract class. If a class contains one or more abstract methods, the class itself must be qualified as abstract.
It's possible to make a class abstract without including any abstract methods. This is useful when you've got a class in which it doesn't make sense to have any abstract methods, and yet you want to prevent any instances of that class.
Abstract classes are also useful refactoring tools, since they allow you to easily move common methods up the inheritance hierarchy.
Interfaces
The interface keyword produces a completely abstract class, one that provides no implementation at all.
An interface says, "All classes that implement this particular interface will look like this."
The interface is used to establish a "protocol" between classes.
interface allowed multiple inheritance
An interface can also contain fields, but these are implicitly static and final.
You can choose to explicitly declare the methods in an interface as public, but they are public even if you don't say it. So wnen you implement an interface, the methods from the interface must be defined as public.
Complete decoupling
Creating a method that behaves differently depending on the argument object that you pass it is called the Strategy design pattern. The method contains the fixed part of the algorithm to be performed, and the Strategy contains the part that varies
The Strategy is the object that you pass in, and it contains code to be executed.
public static void process(Processor p, Object s) {
p.process(s);
}
public static void main (String[] args) {
process(new Upcase(),s);
process(new Downcase(),s);
}
However, you are often in the situation of not being able to modify the classes that you want to use. In these cases, you can use the Adapter design pattern.
class FilterAdapter implements Processor {
Filter filter;
public FilterAdapter (Filter filter) {
this.filter = filter;
}
public String name () { return filter.name();}
public Waveform process (Object input) {
return filter.process((Waveform)input);
}
"Multiple inheritance" in Java
A class can only extends one class, and can implements one or more interface
When you combine a concrets class with interfaces this way, the concrete class must come first, then the interfaces.
The resons for interfaces:
1. to upcast to more than one base type.
2. (the same as using an abstract base class) to prevent the client programmer from makig an object of this class and to establish that it is only an interface.
In fact, if you know somethins is going to be a base class, you can consider making it an interface.
Extending an interface with inheritance
You can easily add new method declarations to an interface by using inheritance, and you can also combine several interfaces into a new interface with inheritance.
Name collisions when combining interfaces
overloaded methods cannot differ only by return type.
Using the same method names in different interfaces that are intended to be combined generally causes confusion in the readability of the code, as well. Strive to avoid it.
Adapting to an interface
A common use for interfaces is the Strategy design pattern.
Fields in interfaces
Because any fields you put into an interface are automatically static and final, the interface is a convenient tool for creating groups of constant values. Before Java SE5, this was the only way to produce the same effect as an enum.
The fields in an interface are automatically public.
Initializing fields in interfaces
Fields defined in interfaces cannot be "blank finals", but they can be initialized with non-constant expressions.
the fields, of course, are not part of the interface. The values are stored in the static storage area for that interface.
Nesting interfaces
nesting an interface, these can have public 、package-access or private visibility.
Implementing a private interface is a way to force the definition of the methods in that interface without adding any type information.
package interfaces.nesting;
class A {
interface B {
void f();
}
public class BImp implements B {
public void f() {
}
}
private class BImp2 implements B {
public void f() {
}
}
public interface C {
void f();
}
class CImp implements C {
public void f() {
}
}
private class CImp2 implements C {
public void f() {
}
}
private interface D {
void f();
}
private class DImp implements D {
public void f() {
}
}
public class DImp2 implements D {
public void f() {
}
}
public D getD() {
return new DImp2();
}
private D dRef;
public void receiveD(D d) {
dRef = d;
dRef.f();
}
}
interface E {
interface G {
void f();
}
// Redundant "public":
public interface H {
void f();
}
void g();
// Cannot be private within an interface:
// ! private interface I {}
}
public class NestingInterfaces {
public class BImp implements A.B {
public void f() {
}
}
class CImp implements A.C {
public void f() {
}
}
// Cannot implement a private interface except
// within that interface’s defining class:
// ! class DImp implements A.D {
// ! public void f() {}
// ! }
class EImp implements E {
public void g() {
}
}
class EGImp implements E.G {
public void f() {
}
}
class EImp2 implements E {
public void g() {
}
class EG implements E.G {
public void f() {
}
}
}
public static void main(String[] args) {
A a = new A();
// Can’t access A.D:
// ! A.D ad = a.getD();
// Doesn’t return anything but A.D:
// ! A.DImp2 di2 = a.getD();
// Cannot access a member of the interface:
// ! a.getD().f();
// Only another A can do anything with getD():
A a2 = new A();
a2.receiveD(a.getD());
}
}
The rules about interfaces-- that all interfaces elements must be public--are strictly enforces here, so an interface nested within another interface is automatically public and cannot be made private.
Notice that when you implement an interface, you are not required to implement any interfaces nested within. Also, private interfaces cannot be implemented outside of their defining classes.
Interfaces and factories
An interfaces is intended to be a gateway to multiple implementations, and a typical way to produce objects that fit the interface is the Factory Method design pattern.
You call a creation method on a factory object which produces an implementation of the interface--this way, in theory, your code is completely isolated from the implementation of the interface.
Summary
Almost anytime you create a class, you could instead create an interface and a factory.
Interfaces should be something you refactor to when necessary, rather than installing the extra level of indirection everywhere, along with the extra complexity.
An appropriate guideline is to prefer classes to interfaces. Start with classes, and if it becomes clear that interfaces are necessary, then refactor. Interfaces are a great tool, but they can easily be overused.
Thinking in Java,Fourth Edition(Java 编程思想,第四版)学习笔记(九)之Interfaces的更多相关文章
- Thinking in Java,Fourth Edition(Java 编程思想,第四版)学习笔记(七)之Access Control
Access control ( or implementation hiding) is about "not getting it right the first time." ...
- Thinking in Java,Fourth Edition(Java 编程思想,第四版)学习笔记(六)之Initialization & Cleanup
Two of these safety issues are initialization and cleanup. initialization -> bug cleanup -> ru ...
- Thinking in Java,Fourth Edition(Java 编程思想,第四版)学习笔记(十三)之Strings
Immutable Strings Objects of the String class are immutable. If you examine the JDK documentation fo ...
- Thinking in Java,Fourth Edition(Java 编程思想,第四版)学习笔记(二)之Introduction to Objects
The genesis of the computer revolution was a machine. The genesis of out programming languages thus ...
- Thinking in Java,Fourth Edition(Java 编程思想,第四版)学习笔记(十四)之Type Information
Runtime type information (RTTI) allow you to discover and use type information while a program is ru ...
- Thinking in Java,Fourth Edition(Java 编程思想,第四版)学习笔记(十二)之Error Handling with Exceptions
The ideal time to catch an error is at compile time, before you even try to run the program. However ...
- Thinking in Java,Fourth Edition(Java 编程思想,第四版)学习笔记(十一)之Holding Your Objects
To solve the general programming problem, you need to create any number of objects, anytime, anywher ...
- Thinking in Java,Fourth Edition(Java 编程思想,第四版)学习笔记(十)之Inner Classes
The inner class is a valuable feature because it allows you to group classes that logically belong t ...
- Thinking in Java,Fourth Edition(Java 编程思想,第四版)学习笔记(八)之Polymorphism
Polymorphism is the third essential feature of an object-oriented programming language,after data ab ...
随机推荐
- vscode不能打开浏览器(Open browser failed!! Please check if you have installed the browser correctly!)
vscode出现上述问题,我也查了很多相关资料,什么改默认浏览器设置什么的,改配置,改系统环境变量什么的,不但麻烦而且最后都难以成功. 下面分享一个可以解决的最简单办法.那就是:舍弃open in b ...
- c# 使用Newtonsoft.Json解析JSON数组
一.获取JSon中某个项的值 要解析格式: [{"VBELN":"10","POSNR":"10","RET_ ...
- 浅析二分搜索树的数据结构的实现(Java 实现)
目录 树结构简介 二分搜索树的基础知识 二叉树的基本概念 二分搜索树的基本概念 二分搜索树的基本结构代码实现 二分搜索树的常见基本操作实现 添加操作 添加操作初步实现 添加操作改进 查询操作 遍历操作 ...
- java后台调用文件上传接口
借鉴:https://blog.csdn.net/yjclsx/article/details/70675057 /** * 调用流程上传文件接口上传文件 * @param url * @param ...
- spss绘制图形更改组距
在绘制数据分布条形图时,要更改y轴的刻度很简单,直接在图形编辑窗口点击y轴修改就可以了. 而x轴的间隔自动设置为1,如果想要更改组距,可以按照以下方式: 点击重新编码为不同变量 选择要更改的变量,在[ ...
- Netty:初识Netty
前文总结了NIO的内容,有了NIO的一些基础之后,我们就可以来看下Netty.Netty是Java领域的高性能网络传输框架,RPC的技术核心就是网络传输和序列化,所以Netty给予了RPC在网络传输领 ...
- python学习第四节 迭代器 生成器
1:什么是迭代 可以直接作用于for循环的对象统称为可迭代对象(Iterable). 可以被next()函数调用并不断返回下一个值的对象称为迭代器(Iterator). 所有的Iterable均可以通 ...
- wsl中配置SML环境
配置SML/NJ #安装 sudo apt install smlnj #但是wsl不支持32位程序,所以需要下面配置 sudo dpkg --add-architecture i386 sudo a ...
- 面试官: 说说你对async的理解
大家好,我是小雨小雨,致力于分享有趣的.实用的技术文章. 内容分为翻译和原创,如果有问题,欢迎随时评论或私信,希望和大家一起进步. 分享不易,希望能够得到大家的支持和关注. TL;DR async是g ...
- shell查询目标jvm的perm占比
#查询指定进程号下面的方法区使用率,jdk1.7是perm,jdk1.8是metaspace function get_perm_use_percent() { pid="$1" ...