Hive数据倾斜的原因及主要解决方法
数据倾斜产生的原因
数据倾斜的原因很大部分是join倾斜和聚合倾斜两大类
Hive倾斜之group by聚合倾斜
- 原因:
- 分组的维度过少,每个维度的值过多,导致处理某值的reduce耗时很久;
- 对一些类型统计的时候某种类型的数据量特别多,其他的数据类型特别少。当按照类型进行group by的时候,会将相同的group by字段的reduce任务需要的数据拉取到同一个节点进行聚合,而当其中每一组的数据量过大时,会出现其他组的计算已经完成而这个reduce还没有计算完成,其他的节点一直等待这个节点的任务执行完成,所以会一直看到map 100% reduce99%的情况;
- 解决方法:
- set hive.map.aggr=true;
- set hive.groupby.skewindata=true;
- 原理:
- hive.map.aggr=true 这个配置代表开启map端聚合;
- hive.groupby.skewindata=true,当选项设定为true,生成的查询计划会有两个MR Job。当第一个MR Job中,Map的输出结果结合会随机分布到Reduce中,每个Reduce做部分聚合操作,并输出结果。这样处理的结果是相同的Group By Key有可能被分发到不同的Reduce中,从而达到负载均衡的目的。第二个MR Job再根据预处理的数据结果按照Group By Key分布到reduce中,这个过程可以保证相同的key被分到同一个reduce中,最后完成最终的聚合操作。
Hive倾斜之Map和Reduce优化
- 1-原因:当出现小文件过多,需要合并小文件。可以通过set hive.merge.mapredfiles=true来解决;
- 2-原因:输入数据存在大块和小块的严重问题,比如 说:一个大文件128M,还有1000个小文件,每 个1KB。 解决方法:任务输入前做文件合并,将众多小文件合并成一个大文件。通过set hive.merge.mapredfiles=true解决;
- 3-原因:单个文件大小稍稍大于配置的block块的大小,此时需要适当增加map的个数。解决方法:set mapred.map.tasks的个数;
- 4-原因:文件大小适中,但是map端计算量非常大,如:select id,count(*),sum(case when...),sum(case when ...)...需要增加map个数。解决方法:set mapred.map.tasks个数,set mapred.reduce.tasks个数;
Hive倾斜之HQL中包含count(distinct)时
- 如果数据量非常大,执行如select a,count(distinct b) from t group by a;类型的sql时,会出现数据倾斜的问题。
- 解决方法:使用sum...group by代替。如:select a,sum(1) from(select a,b from t group by a,b) group by a;
Hive倾斜之HQL中join优化
- 当遇到一个大表和一个小表进行join操作时。使用mapjoin将小表加载到内存中。如:select /*+ MAPJOIN(a) */ a.c1, b.c1 ,b.c2 from a join b where a.c1 = b.c1;
- 遇到需要进行join,但是关联字段有数据为null,如表一的id需要和表二的id进行关联;
- 解决方法1:id为null的不参与关联
比如:
- 解决方法1:id为null的不参与关联
select * from log a
join users b
on a.id is not null and a.id = b.id
union all
select * from log a
where a.id is null;
- 解决方法2: 给null值分配随机的key值
比如:
select * from log a
left outer join users b
on
case when a.user_id is null
then concat(‘hive’,rand() )
else a.user_id end = b.user_id;
合理设置Map数
对上文描述的总结
- 1)通常情况下,作业会通过input的目录产生一个或者多个map任务。
主要的决定因素有:input的文件总个数,input的文件大小,集群设置的文件块大小。 - 2)是不是map数越多越好?
答案是否定的。如果一个任务有很多小文件(远远小于块大小128m),则每个小文件也会被当做一个块,用一个map任务来完成,而一个map任务启动和初始化的时间远远大于逻辑处理的时间,就会造成很大的资源浪费。而且,同时可执行的map数是受限的。 - 3)是不是保证每个map处理接近128m的文件块,就高枕无忧了?
答案也是不一定。比如有一个127m的文件,正常会用一个map去完成,但这个文件只有一个或者两个小字段,却有几千万的记录,如果map处理的逻辑比较复杂,用一个map任务去做,肯定也比较耗时。 - 针对上面的问题2和3,我们需要采取两种方式来解决:即减少map数和增加map数;
Hive数据倾斜的原因及主要解决方法的更多相关文章
- 实战 | Hive 数据倾斜问题定位排查及解决
Hive 数据倾斜怎么发现,怎么定位,怎么解决 多数介绍数据倾斜的文章都是以大篇幅的理论为主,并没有给出具体的数据倾斜案例.当工作中遇到了倾斜问题,这些理论很难直接应用,导致我们面对倾斜时还是不知所措 ...
- spark sql 访问hive数据时找不mysql的解决方法
我尝试着在classpath中加n入mysql的驱动仍不行 解决方法:在启动的时候加入参数--driver-class中加入mysql 驱动 [hadoop@master spark-1.0.1-bi ...
- hive数据倾斜原因以及解决办法
何谓数据倾斜?数据倾斜指的是,并行处理的数据集 中,某一部分(如Spark的一个Partition)的数据显著多于其它部分,从而使得该部分的处理速度成为整个数据集处理的瓶颈. 表现为整体任务基本完成, ...
- Hive 数据倾斜原因及解决方法(转)
在做Shuffle阶段的优化过程中,遇到了数据倾斜的问题,造成了对一些情况下优化效果不明显.主要是因为在Job完成后的所得到的Counters是整个Job的总和,优化是基于这些Counters得出的平 ...
- Hive数据倾斜解决方法总结
数据倾斜是进行大数据计算时最经常遇到的问题之一.当我们在执行HiveQL或者运行MapReduce作业时候,如果遇到一直卡在map100%,reduce99%一般就是遇到了数据倾斜的问题.数据倾斜其实 ...
- Hive数据倾斜解决办法总结
数据倾斜是进行大数据计算时最经常遇到的问题之一.当我们在执行HiveQL或者运行MapReduce作业时候,如果遇到一直卡在map100%,reduce99%一般就是遇到了数据倾斜的问题.数据倾斜其实 ...
- Hive数据倾斜和解决办法
转自:https://blog.csdn.net/xinzhi8/article/details/71455883 操作: 关键词 情形 后果 Join 其中一个表较小,但是key集中 ...
- Spark产生数据倾斜的原因以及解决办法
Spark数据倾斜 产生原因 首先RDD的逻辑其实时表示一个对象集合.在物理执行期间,RDD会被分为一系列的分区,每个分区都是整个数据集的子集.当spark调度并运行任务的时候,Spark会为每一个分 ...
- Hive数据倾斜总结
倾斜的原因: 使map的输出数据更均匀的分布到reduce中去,是我们的最终目标.由于Hash算法的局限性,按key Hash会或多或少的造成数据倾斜.大量经验表明数据倾斜的原因是人为的建表疏忽或业务 ...
随机推荐
- HEXO+Git+Github+域名搭建个人博客
搭建个人博客可以分为以下五个部分 一.搭建本地环境(个人为Win10) 1.安装Git,下载地址:点击 下载后,按提示进行安装即可,作用是:把本地的内容提交到github上去 注意:官网下载速度不是很 ...
- 强制迁移、合区 APP太强势伤害用户同时是否违法?
APP太强势伤害用户同时是否违法?" title="强制迁移.合区 APP太强势伤害用户同时是否违法?"> 对于经常混迹在国内各大手游的玩家来说,"合区& ...
- 禁止用户使用 sudo su 命令进入root 模式
禁止普通用户通过sudo su命令进入root模式的方法(在root模式下操作): 1. 修改 /etc/sudoers 的权限, 用来写入文件 # chmod 777 /etc/sudoers 2. ...
- Javascript学习笔记-基本概念-数据类型
1.typeof 操作符的返回值: "undefined"——如果这个值未定义: "boolean"——如果这个值是布尔值: "string" ...
- Java对接微信登录
今天我们来对接微信开放平台的网站应用登录 首先上文档链接:https://developers.weixin.qq.com/doc/oplatform/Website_App/WeChat_Login ...
- Python - 字符串格式化详解(%、format)
Python在字符串格式化的两种方式 % format %,关于整数的输出 %o:oct 八进制%d:dec 十进制%x:hex 十六进制 print("整数:%d,%d,%d" ...
- 分享一个快速审查js操作Dom的css
第一步 打开开发者工具第二步 打开 Sources 面板第三步 执行用户操作让对象可见(例如鼠标悬停)第四步 在元素可见的时候按下 F8(与“暂停脚本执行”按钮相同)第五步 点击开发者工具左上角的“选 ...
- IOS手动添加的View 在代码中使用(自动布局)autoLayout
- (void)viewDidLoad { [super viewDidLoad]; UIButton *btnTest = [UIButton buttonWithType:UIButtonType ...
- web安全测试--环境搭建
本博客主要作为作者的学习笔记,请勿装载. 作为一个安全测试的入门选手,一切操作在虚拟机中进行是最保险的. 第一先下载自己喜欢的虚拟机,我的笔记本用的VirtualBox(下载地址:https://ww ...
- Sublime text 3 运行python3
要在Sublime text3编译器中成功运行 python3,需要在编译器设置中将python3添加至编译器中 新建编译系统 编辑弹出的文件,添加如下内容: { "cmd":[& ...