数据倾斜产生的原因

数据倾斜的原因很大部分是join倾斜和聚合倾斜两大类

Hive倾斜之group by聚合倾斜

  • 原因:

    • 分组的维度过少,每个维度的值过多,导致处理某值的reduce耗时很久;
    • 对一些类型统计的时候某种类型的数据量特别多,其他的数据类型特别少。当按照类型进行group by的时候,会将相同的group by字段的reduce任务需要的数据拉取到同一个节点进行聚合,而当其中每一组的数据量过大时,会出现其他组的计算已经完成而这个reduce还没有计算完成,其他的节点一直等待这个节点的任务执行完成,所以会一直看到map 100% reduce99%的情况;
  • 解决方法:
    • set hive.map.aggr=true;
    • set hive.groupby.skewindata=true;
  • 原理:
    • hive.map.aggr=true 这个配置代表开启map端聚合;
    • hive.groupby.skewindata=true,当选项设定为true,生成的查询计划会有两个MR Job。当第一个MR Job中,Map的输出结果结合会随机分布到Reduce中,每个Reduce做部分聚合操作,并输出结果。这样处理的结果是相同的Group By Key有可能被分发到不同的Reduce中,从而达到负载均衡的目的。第二个MR Job再根据预处理的数据结果按照Group By Key分布到reduce中,这个过程可以保证相同的key被分到同一个reduce中,最后完成最终的聚合操作。

Hive倾斜之Map和Reduce优化

  • 1-原因:当出现小文件过多,需要合并小文件。可以通过set hive.merge.mapredfiles=true来解决;
  • 2-原因:输入数据存在大块和小块的严重问题,比如 说:一个大文件128M,还有1000个小文件,每 个1KB。 解决方法:任务输入前做文件合并,将众多小文件合并成一个大文件。通过set hive.merge.mapredfiles=true解决;
  • 3-原因:单个文件大小稍稍大于配置的block块的大小,此时需要适当增加map的个数。解决方法:set mapred.map.tasks的个数;
  • 4-原因:文件大小适中,但是map端计算量非常大,如:select id,count(*),sum(case when...),sum(case when ...)...需要增加map个数。解决方法:set mapred.map.tasks个数,set mapred.reduce.tasks个数;

Hive倾斜之HQL中包含count(distinct)时

  • 如果数据量非常大,执行如select a,count(distinct b) from t group by a;类型的sql时,会出现数据倾斜的问题。
  • 解决方法:使用sum...group by代替。如:select a,sum(1) from(select a,b from t group by a,b) group by a;

Hive倾斜之HQL中join优化

  • 当遇到一个大表和一个小表进行join操作时。使用mapjoin将小表加载到内存中。如:select /*+ MAPJOIN(a) */ a.c1, b.c1 ,b.c2 from a join b where a.c1 = b.c1;
  • 遇到需要进行join,但是关联字段有数据为null,如表一的id需要和表二的id进行关联;
    • 解决方法1:id为null的不参与关联
      比如:
select * from log a
 join users b
on a.id is not null and a.id = b.id
union all
select * from log a
where a.id is null;
  • 解决方法2: 给null值分配随机的key值
    比如:
select * from log a
left outer join users b
on
case when a.user_id is null
then concat(‘hive’,rand() )
else a.user_id end = b.user_id;

合理设置Map数

对上文描述的总结

  • 1)通常情况下,作业会通过input的目录产生一个或者多个map任务。
    主要的决定因素有:input的文件总个数,input的文件大小,集群设置的文件块大小。
  • 2)是不是map数越多越好?
    答案是否定的。如果一个任务有很多小文件(远远小于块大小128m),则每个小文件也会被当做一个块,用一个map任务来完成,而一个map任务启动和初始化的时间远远大于逻辑处理的时间,就会造成很大的资源浪费。而且,同时可执行的map数是受限的。
  • 3)是不是保证每个map处理接近128m的文件块,就高枕无忧了?
    答案也是不一定。比如有一个127m的文件,正常会用一个map去完成,但这个文件只有一个或者两个小字段,却有几千万的记录,如果map处理的逻辑比较复杂,用一个map任务去做,肯定也比较耗时。
  • 针对上面的问题2和3,我们需要采取两种方式来解决:即减少map数和增加map数;

Hive数据倾斜的原因及主要解决方法的更多相关文章

  1. 实战 | Hive 数据倾斜问题定位排查及解决

    Hive 数据倾斜怎么发现,怎么定位,怎么解决 多数介绍数据倾斜的文章都是以大篇幅的理论为主,并没有给出具体的数据倾斜案例.当工作中遇到了倾斜问题,这些理论很难直接应用,导致我们面对倾斜时还是不知所措 ...

  2. spark sql 访问hive数据时找不mysql的解决方法

    我尝试着在classpath中加n入mysql的驱动仍不行 解决方法:在启动的时候加入参数--driver-class中加入mysql 驱动 [hadoop@master spark-1.0.1-bi ...

  3. hive数据倾斜原因以及解决办法

    何谓数据倾斜?数据倾斜指的是,并行处理的数据集 中,某一部分(如Spark的一个Partition)的数据显著多于其它部分,从而使得该部分的处理速度成为整个数据集处理的瓶颈. 表现为整体任务基本完成, ...

  4. Hive 数据倾斜原因及解决方法(转)

    在做Shuffle阶段的优化过程中,遇到了数据倾斜的问题,造成了对一些情况下优化效果不明显.主要是因为在Job完成后的所得到的Counters是整个Job的总和,优化是基于这些Counters得出的平 ...

  5. Hive数据倾斜解决方法总结

    数据倾斜是进行大数据计算时最经常遇到的问题之一.当我们在执行HiveQL或者运行MapReduce作业时候,如果遇到一直卡在map100%,reduce99%一般就是遇到了数据倾斜的问题.数据倾斜其实 ...

  6. Hive数据倾斜解决办法总结

    数据倾斜是进行大数据计算时最经常遇到的问题之一.当我们在执行HiveQL或者运行MapReduce作业时候,如果遇到一直卡在map100%,reduce99%一般就是遇到了数据倾斜的问题.数据倾斜其实 ...

  7. Hive数据倾斜和解决办法

    转自:https://blog.csdn.net/xinzhi8/article/details/71455883 操作: 关键词 情形      后果 Join 其中一个表较小,但是key集中   ...

  8. Spark产生数据倾斜的原因以及解决办法

    Spark数据倾斜 产生原因 首先RDD的逻辑其实时表示一个对象集合.在物理执行期间,RDD会被分为一系列的分区,每个分区都是整个数据集的子集.当spark调度并运行任务的时候,Spark会为每一个分 ...

  9. Hive数据倾斜总结

    倾斜的原因: 使map的输出数据更均匀的分布到reduce中去,是我们的最终目标.由于Hash算法的局限性,按key Hash会或多或少的造成数据倾斜.大量经验表明数据倾斜的原因是人为的建表疏忽或业务 ...

随机推荐

  1. 1——PHP常见的系统常量

    */ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:text.cpp * 作者:常轩 * 微信公众号:Worldhe ...

  2. 2,Java中的数据结构

    1,字符串(String) ···String为特殊的引用类型,不可变. ···常用实例方法:     获取子串:substring(start, end);     获取索引:indexOf(cha ...

  3. js轮询及踩过的坑

    背景 下午四点,天气晴朗,阳光明媚,等着下班产品:我希望页面上的这个数据实时变化开发:···,可以,用那个叫着WebSocket的东西,再找一个封装好框架,如:mqtt(感觉自己好机智)产品:要开发好 ...

  4. java多线程基础API

    本次内容主要讲认识Java中的多线程.线程的启动与中止.yield()和join.线程优先级和守护线程. 1.Java程序天生就是多线程的 一个Java程序从main()方法开始执行,然后按照既定的代 ...

  5. vue项目用sha256、md5、base64加密密码

    无论你开发什么样的项目,你可能都会要开发登录.注册.修改密码.忘记密码这些功能,少数项目除外!!要实现这些功能,对于保护用户或者管理员账号密码,这是我们程序员肯定要做的事情.要是用户密码不加密,用明文 ...

  6. MyBatis 源码分析-项目总览

    MyBatis 源码分析-项目总览 1.概述 本文主要大致介绍一下MyBatis的项目结构.引用参考资料<MyBatis技术内幕> 此外,https://mybatis.org/mybat ...

  7. SpringBoot是如何实现自动配置的?--SpringBoot源码(四)

    注:该源码分析对应SpringBoot版本为2.1.0.RELEASE 1 前言 本篇接 助力SpringBoot自动配置的条件注解ConditionalOnXXX分析--SpringBoot源码(三 ...

  8. 波兰政府在继韩国之后也增加了对 Linux 的使用

    导读 前段时间, 韩国政府起草了一项战略,准备采用基于 Linux 的开源操作系统全面取代 Windows 7,以摆脱对其的依赖. 目前,波兰的社会保险公司 ZUS( Zakład Ubezpiecz ...

  9. Core + Vue 后台管理基础框架1——运行系统

    1.down源码 git clone https://github.com/KINGGUOKUN/SystemManagement.git,项目目录如下: 2.还原数据库 找到项目根目录下System ...

  10. win10安装docker 和 splash

    参考链接1:https://www.cnblogs.com/321lxl/p/9536616.html 参考链接2:https://blog.csdn.net/qq_18831501/article/ ...