Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 15040   Accepted: 7737

Description

Bulls are so much better at math than the cows. They can multiply huge integers together and get perfectly precise answers ... or so they say. Farmer John wonders if their answers are correct. Help him check the bulls' answers.
Read in two positive integers (no more than 40 digits each) and compute their product. Output it as a normal number (with no extra leading zeros).

FJ asks that you do this yourself; don't use a special library function for the multiplication.

Input

* Lines 1..2: Each line contains a single decimal number.

Output

* Line 1: The exact product of the two input lines

Sample Input

11111111111111
1111111111

Sample Output

12345679011110987654321

Source

USACO 2004 November


问题链接:POJ2389 Bull Math

问题简述:输入两个正整数,它们不超过40位,计算它们的乘积。

问题分析:这是一个大整数计算问题,可以用一个大整数类来实现。

程序说明:编译的时候需要使用G++编译器。求整数绝对值的函数abs()需要用C语言库stdlib.h中的函数,否则会出问题。该问题只用到了乘法运算,为了代码的简洁,可以将不需要的代码删除。这里使用了一个完整的大整数运算类,也可以用于其他地方。

参考链接:B00008 C++实现的大整数计算(一)

AC的C++语言程序如下:

/* POJ2389 Bull Math */

#include <iostream>
#include <string>
#include <sstream>
#include <cstdlib> #define MAX 100 // for strings using namespace std; class BigInteger {
private:
string number;
bool sign;
public:
BigInteger(); // empty constructor initializes zero
BigInteger(string s); // "string" constructor
BigInteger(string s, bool sin); // "string" constructor
BigInteger(int n); // "int" constructor
void setNumber(string s);
const string& getNumber(); // retrieves the number
void setSign(bool s);
const bool& getSign();
BigInteger absolute(); // returns the absolute value
void operator = (BigInteger b);
bool operator == (BigInteger b);
bool operator != (BigInteger b);
bool operator > (BigInteger b);
bool operator < (BigInteger b);
bool operator >= (BigInteger b);
bool operator <= (BigInteger b);
BigInteger& operator ++(); // prefix
BigInteger operator ++(int); // postfix
BigInteger& operator --(); // prefix
BigInteger operator --(int); // postfix
BigInteger operator + (BigInteger b);
BigInteger operator - (BigInteger b);
BigInteger operator * (BigInteger b);
BigInteger operator / (BigInteger b);
BigInteger operator % (BigInteger b);
BigInteger& operator += (BigInteger b);
BigInteger& operator -= (BigInteger b);
BigInteger& operator *= (BigInteger b);
BigInteger& operator /= (BigInteger b);
BigInteger& operator %= (BigInteger b);
BigInteger& operator [] (int n);
BigInteger operator -(); // unary minus sign
operator string(); // for conversion from BigInteger to string
private:
bool equals(BigInteger n1, BigInteger n2);
bool less(BigInteger n1, BigInteger n2);
bool greater(BigInteger n1, BigInteger n2);
string add(string number1, string number2);
string subtract(string number1, string number2);
string multiply(string n1, string n2);
pair<string, long long> divide(string n, long long den);
string toString(long long n);
long long toInt(string s);
}; //------------------------------------------------------------------------------ BigInteger::BigInteger() { // empty constructor initializes zero
number = "0";
sign = false;
} BigInteger::BigInteger(string s) { // "string" constructor
if( isdigit(s[0]) ) { // if not signed
setNumber(s);
sign = false; // +ve
} else {
setNumber( s.substr(1) );
sign = (s[0] == '-');
}
} BigInteger::BigInteger(string s, bool sin) { // "string" constructor
setNumber( s );
setSign( sin );
} BigInteger::BigInteger(int n) { // "int" constructor
stringstream ss;
string s;
ss << n;
ss >> s; if( isdigit(s[0]) ) { // if not signed
setNumber( s );
setSign( false ); // +ve
} else {
setNumber( s.substr(1) );
setSign( s[0] == '-' );
}
} void BigInteger::setNumber(string s) {
number = s;
} const string& BigInteger::getNumber() { // retrieves the number
return number;
} void BigInteger::setSign(bool s) {
sign = s;
} const bool& BigInteger::getSign() {
return sign;
} BigInteger BigInteger::absolute() {
return BigInteger( getNumber() ); // +ve by default
} void BigInteger::operator = (BigInteger b) {
setNumber( b.getNumber() );
setSign( b.getSign() );
} bool BigInteger::operator == (BigInteger b) {
return equals((*this) , b);
} bool BigInteger::operator != (BigInteger b) {
return ! equals((*this) , b);
} bool BigInteger::operator > (BigInteger b) {
return greater((*this) , b);
} bool BigInteger::operator < (BigInteger b) {
return less((*this) , b);
} bool BigInteger::operator >= (BigInteger b) {
return equals((*this) , b)
|| greater((*this), b);
} bool BigInteger::operator <= (BigInteger b) {
return equals((*this) , b)
|| less((*this) , b);
} BigInteger& BigInteger::operator ++() { // prefix
(*this) = (*this) + 1;
return (*this);
} BigInteger BigInteger::operator ++(int) { // postfix
BigInteger before = (*this); (*this) = (*this) + 1; return before;
} BigInteger& BigInteger::operator --() { // prefix
(*this) = (*this) - 1;
return (*this); } BigInteger BigInteger::operator --(int) { // postfix
BigInteger before = (*this); (*this) = (*this) - 1; return before;
} BigInteger BigInteger::operator + (BigInteger b) {
BigInteger addition;
if( getSign() == b.getSign() ) { // both +ve or -ve
addition.setNumber( add(getNumber(), b.getNumber() ) );
addition.setSign( getSign() );
} else { // sign different
if( absolute() > b.absolute() ) {
addition.setNumber( subtract(getNumber(), b.getNumber() ) );
addition.setSign( getSign() );
} else {
addition.setNumber( subtract(b.getNumber(), getNumber() ) );
addition.setSign( b.getSign() );
}
}
if(addition.getNumber() == "0") // avoid (-0) problem
addition.setSign(false); return addition;
} BigInteger BigInteger::operator - (BigInteger b) {
b.setSign( ! b.getSign() ); // x - y = x + (-y)
return (*this) + b;
} BigInteger BigInteger::operator * (BigInteger b) {
BigInteger mul; mul.setNumber( multiply(getNumber(), b.getNumber() ) );
mul.setSign( getSign() != b.getSign() ); if(mul.getNumber() == "0") // avoid (-0) problem
mul.setSign(false); return mul;
} // Warning: Denomerator must be within "long long" size not "BigInteger"
BigInteger BigInteger::operator / (BigInteger b) {
long long den = toInt( b.getNumber() );
BigInteger div; div.setNumber( divide(getNumber(), den).first );
div.setSign( getSign() != b.getSign() ); if(div.getNumber() == "0") // avoid (-0) problem
div.setSign(false); return div;
} // Warning: Denomerator must be within "long long" size not "BigInteger"
BigInteger BigInteger::operator % (BigInteger b) {
long long den = toInt( b.getNumber() ); BigInteger rem;
long long rem_int = divide(number, den).second;
rem.setNumber( toString(rem_int) );
rem.setSign( getSign() != b.getSign() ); if(rem.getNumber() == "0") // avoid (-0) problem
rem.setSign(false); return rem;
} BigInteger& BigInteger::operator += (BigInteger b) {
(*this) = (*this) + b;
return (*this);
} BigInteger& BigInteger::operator -= (BigInteger b) {
(*this) = (*this) - b;
return (*this);
} BigInteger& BigInteger::operator *= (BigInteger b) {
(*this) = (*this) * b;
return (*this);
} BigInteger& BigInteger::operator /= (BigInteger b) {
(*this) = (*this) / b;
return (*this);
} BigInteger& BigInteger::operator %= (BigInteger b) {
(*this) = (*this) % b;
return (*this);
} BigInteger& BigInteger::operator [] (int n) {
return *(this + (n*sizeof(BigInteger)));
} BigInteger BigInteger::operator -() { // unary minus sign
return (*this) * -1;
} BigInteger::operator string() { // for conversion from BigInteger to string
string signedString = ( getSign() ) ? "-" : ""; // if +ve, don't print + sign
signedString += number;
return signedString;
} bool BigInteger::equals(BigInteger n1, BigInteger n2) {
return n1.getNumber() == n2.getNumber()
&& n1.getSign() == n2.getSign();
} bool BigInteger::less(BigInteger n1, BigInteger n2) {
bool sign1 = n1.getSign();
bool sign2 = n2.getSign(); if(sign1 && ! sign2) // if n1 is -ve and n2 is +ve
return true; else if(! sign1 && sign2)
return false; else if(! sign1) { // both +ve
if(n1.getNumber().length() < n2.getNumber().length() )
return true;
if(n1.getNumber().length() > n2.getNumber().length() )
return false;
return n1.getNumber() < n2.getNumber();
} else { // both -ve
if(n1.getNumber().length() > n2.getNumber().length())
return true;
if(n1.getNumber().length() < n2.getNumber().length())
return false;
return n1.getNumber().compare( n2.getNumber() ) > 0; // greater with -ve sign is LESS
}
} bool BigInteger::greater(BigInteger n1, BigInteger n2) {
return ! equals(n1, n2) && ! less(n1, n2);
} string BigInteger::add(string number1, string number2) {
string add = (number1.length() > number2.length()) ? number1 : number2;
char carry = '0';
int differenceInLength = abs( (int) (number1.size() - number2.size()) ); if(number1.size() > number2.size())
number2.insert(0, differenceInLength, '0'); // put zeros from left else// if(number1.size() < number2.size())
number1.insert(0, differenceInLength, '0'); for(int i=number1.size()-1; i>=0; --i) {
add[i] = ((carry-'0')+(number1[i]-'0')+(number2[i]-'0')) + '0'; if(i != 0) {
if(add[i] > '9') {
add[i] -= 10;
carry = '1';
} else
carry = '0';
}
}
if(add[0] > '9') {
add[0]-= 10;
add.insert(0,1,'1');
}
return add;
} string BigInteger::subtract(string number1, string number2) {
string sub = (number1.length()>number2.length())? number1 : number2;
int differenceInLength = abs( (int)(number1.size() - number2.size()) ); if(number1.size() > number2.size())
number2.insert(0, differenceInLength, '0'); else
number1.insert(0, differenceInLength, '0'); for(int i=number1.length()-1; i>=0; --i) {
if(number1[i] < number2[i]) {
number1[i] += 10;
number1[i-1]--;
}
sub[i] = ((number1[i]-'0')-(number2[i]-'0')) + '0';
} while(sub[0]=='0' && sub.length()!=1) // erase leading zeros
sub.erase(0,1); return sub;
} string BigInteger::multiply(string n1, string n2) {
if(n1.length() > n2.length())
n1.swap(n2); string res = "0";
for(int i=n1.length()-1; i>=0; --i) {
string temp = n2;
int currentDigit = n1[i]-'0';
int carry = 0; for(int j=temp.length()-1; j>=0; --j) {
temp[j] = ((temp[j]-'0') * currentDigit) + carry; if(temp[j] > 9) {
carry = (temp[j]/10);
temp[j] -= (carry*10);
} else
carry = 0; temp[j] += '0'; // back to string mood
} if(carry > 0)
temp.insert(0, 1, (carry+'0')); temp.append((n1.length()-i-1), '0'); // as like mult by 10, 100, 1000, 10000 and so on res = add(res, temp); // O(n)
} while(res[0] == '0' && res.length()!=1) // erase leading zeros
res.erase(0,1); return res;
} pair<string, long long> BigInteger::divide(string n, long long den) {
long long rem = 0;
string result;
result.resize(MAX); for(int indx=0, len = n.length(); indx<len; ++indx) {
rem = (rem * 10) + (n[indx] - '0');
result[indx] = rem / den + '0';
rem %= den;
}
result.resize( n.length() ); while( result[0] == '0' && result.length() != 1)
result.erase(0,1); if(result.length() == 0)
result = "0"; return make_pair(result, rem);
} string BigInteger::toString(long long n) {
stringstream ss;
string temp; ss << n;
ss >> temp; return temp;
} long long BigInteger::toInt(string s) {
long long sum = 0; for(int i=0; i<(int)s.length(); i++)
sum = (sum*10) + (s[i] - '0'); return sum;
} int main()
{
string a, b;
BigInteger bia, bib, bic; while(cin >> a >> b) {
bia.setNumber(a);
bib.setNumber(b); bic = bia * bib; cout << bic.getNumber() << endl;
} return 0;
}

转载于:https://www.cnblogs.com/tigerisland/p/7564133.html

POJ2389 Bull Math【大数】的更多相关文章

  1. POJ2389 Bull Math

    /* POJ2389 Bull Math http://poj.org/problem?id=2389 高精度乘法 * */ #include <cstring> #include < ...

  2. [PKU2389]Bull Math (大数运算)

    Description Bulls are so much better at math than the cows. They can multiply huge integers together ...

  3. Poj OpenJudge 百练 2389 Bull Math

    1.Link: http://poj.org/problem?id=2389 http://bailian.openjudge.cn/practice/2389/ 2.Content: Bull Ma ...

  4. BZOJ1754: [Usaco2005 qua]Bull Math

    1754: [Usaco2005 qua]Bull Math Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 374  Solved: 227[Submit ...

  5. 1754: [Usaco2005 qua]Bull Math

    1754: [Usaco2005 qua]Bull Math Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 398  Solved: 242[Submit ...

  6. POJ 2389 Bull Math(水~Java -大数相乘)

    题目链接:http://poj.org/problem?id=2389 题目大意: 大数相乘. 解题思路: java BigInteger类解决 o.0 AC Code: import java.ma ...

  7. BZOJ 1754: [Usaco2005 qua]Bull Math

    Description Bulls are so much better at math than the cows. They can multiply huge integers together ...

  8. poj 2389.Bull Math 解题报告

    题目链接:http://poj.org/problem?id=2389 题目意思:就是大整数乘法. 题目中说每个整数不超过 40 位,是错的!!!要开大点,这里我开到100. 其实大整数乘法还是第一次 ...

  9. 【BZOJ】1754: [Usaco2005 qua]Bull Math

    [算法]高精度乘法 #include<cstdio> #include<algorithm> #include<cstring> using namespace s ...

随机推荐

  1. jsbrage——和app交互

      <html> <head> <meta content="text/html; charset=utf-8" http-equiv="c ...

  2. ASP.NET CORE WEBAPI文件下载

    ASP.NET CORE WEBAPI文件下载 最近要使用ASP.NET CORE WEBAPI用来下载文件,使用的.NET CORE 3.1.考虑如下场景: 文件是程序生成的. 文件应该能兼容各种格 ...

  3. ECMAScript 6,es6 get和set的区别

    前言:ECMAScript 6是什么 一个常见的问题是,ECMAScript 和 JavaScript 到底是什么关系? 要讲清楚这个问题,需要回顾历史.1996 年 11 月,JavaScript ...

  4. Mysql数据库错误代码大全

                                                    Mysql数据库错误代码大全 出现较多的一些网页代码提示的意思: 1016错误:文件无法打开,使用后台修 ...

  5. Python操作Oracle数据库:cx_Oracle

    .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...

  6. 2015蓝桥杯五星填数(C++C组)

    题目:五星填数 如[图1.png]的五星图案节点填上数字:1~12,除去7和11.要求每条直线上数字和相等.如图就是恰当的填法.请你利用计算机搜索所有可能的填法有多少种.注意:旋转或镜像后相同的算同一 ...

  7. 关于SQLAlchemy ORM框架

    SQLAlchemy 1.介绍 SQLAlchemy是一个基于Python实现的ORM框架.该框架建立在 DB API之上,使用关系对象映射进行数据库操作,简言之便是:将类和对象转换成SQL,然后使用 ...

  8. shell命令-if语句

    判断参数的个数 -ne 不等于 -eq 等于 -gt 大于 -lt 小于 -ge 大于等于 -le 小于等于 if [ "$#" -ne 1 ];then echo "n ...

  9. 如何从零开始学Python?会玩游戏就行,在玩的过程就能掌握编程

    现在学习编程的人很多,尤其是python编程,都列入高考了,而且因为人工智能时代的到来,编程也将是一门越来越重要的技能. 但是怎么从零开始学python比较好呢?其实,你会玩游戏就行. 从零基础开始教 ...

  10. ES6新特性箭头函数和常用function()对比

    // 无参 var fn1 = function() {} var fn1 = () => {} // 单个参数 var fn2 = function(a) {} var fn2 = a =&g ...