Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 15040   Accepted: 7737

Description

Bulls are so much better at math than the cows. They can multiply huge integers together and get perfectly precise answers ... or so they say. Farmer John wonders if their answers are correct. Help him check the bulls' answers.
Read in two positive integers (no more than 40 digits each) and compute their product. Output it as a normal number (with no extra leading zeros).

FJ asks that you do this yourself; don't use a special library function for the multiplication.

Input

* Lines 1..2: Each line contains a single decimal number.

Output

* Line 1: The exact product of the two input lines

Sample Input

11111111111111
1111111111

Sample Output

12345679011110987654321

Source

USACO 2004 November


问题链接:POJ2389 Bull Math

问题简述:输入两个正整数,它们不超过40位,计算它们的乘积。

问题分析:这是一个大整数计算问题,可以用一个大整数类来实现。

程序说明:编译的时候需要使用G++编译器。求整数绝对值的函数abs()需要用C语言库stdlib.h中的函数,否则会出问题。该问题只用到了乘法运算,为了代码的简洁,可以将不需要的代码删除。这里使用了一个完整的大整数运算类,也可以用于其他地方。

参考链接:B00008 C++实现的大整数计算(一)

AC的C++语言程序如下:

/* POJ2389 Bull Math */

#include <iostream>
#include <string>
#include <sstream>
#include <cstdlib> #define MAX 100 // for strings using namespace std; class BigInteger {
private:
string number;
bool sign;
public:
BigInteger(); // empty constructor initializes zero
BigInteger(string s); // "string" constructor
BigInteger(string s, bool sin); // "string" constructor
BigInteger(int n); // "int" constructor
void setNumber(string s);
const string& getNumber(); // retrieves the number
void setSign(bool s);
const bool& getSign();
BigInteger absolute(); // returns the absolute value
void operator = (BigInteger b);
bool operator == (BigInteger b);
bool operator != (BigInteger b);
bool operator > (BigInteger b);
bool operator < (BigInteger b);
bool operator >= (BigInteger b);
bool operator <= (BigInteger b);
BigInteger& operator ++(); // prefix
BigInteger operator ++(int); // postfix
BigInteger& operator --(); // prefix
BigInteger operator --(int); // postfix
BigInteger operator + (BigInteger b);
BigInteger operator - (BigInteger b);
BigInteger operator * (BigInteger b);
BigInteger operator / (BigInteger b);
BigInteger operator % (BigInteger b);
BigInteger& operator += (BigInteger b);
BigInteger& operator -= (BigInteger b);
BigInteger& operator *= (BigInteger b);
BigInteger& operator /= (BigInteger b);
BigInteger& operator %= (BigInteger b);
BigInteger& operator [] (int n);
BigInteger operator -(); // unary minus sign
operator string(); // for conversion from BigInteger to string
private:
bool equals(BigInteger n1, BigInteger n2);
bool less(BigInteger n1, BigInteger n2);
bool greater(BigInteger n1, BigInteger n2);
string add(string number1, string number2);
string subtract(string number1, string number2);
string multiply(string n1, string n2);
pair<string, long long> divide(string n, long long den);
string toString(long long n);
long long toInt(string s);
}; //------------------------------------------------------------------------------ BigInteger::BigInteger() { // empty constructor initializes zero
number = "0";
sign = false;
} BigInteger::BigInteger(string s) { // "string" constructor
if( isdigit(s[0]) ) { // if not signed
setNumber(s);
sign = false; // +ve
} else {
setNumber( s.substr(1) );
sign = (s[0] == '-');
}
} BigInteger::BigInteger(string s, bool sin) { // "string" constructor
setNumber( s );
setSign( sin );
} BigInteger::BigInteger(int n) { // "int" constructor
stringstream ss;
string s;
ss << n;
ss >> s; if( isdigit(s[0]) ) { // if not signed
setNumber( s );
setSign( false ); // +ve
} else {
setNumber( s.substr(1) );
setSign( s[0] == '-' );
}
} void BigInteger::setNumber(string s) {
number = s;
} const string& BigInteger::getNumber() { // retrieves the number
return number;
} void BigInteger::setSign(bool s) {
sign = s;
} const bool& BigInteger::getSign() {
return sign;
} BigInteger BigInteger::absolute() {
return BigInteger( getNumber() ); // +ve by default
} void BigInteger::operator = (BigInteger b) {
setNumber( b.getNumber() );
setSign( b.getSign() );
} bool BigInteger::operator == (BigInteger b) {
return equals((*this) , b);
} bool BigInteger::operator != (BigInteger b) {
return ! equals((*this) , b);
} bool BigInteger::operator > (BigInteger b) {
return greater((*this) , b);
} bool BigInteger::operator < (BigInteger b) {
return less((*this) , b);
} bool BigInteger::operator >= (BigInteger b) {
return equals((*this) , b)
|| greater((*this), b);
} bool BigInteger::operator <= (BigInteger b) {
return equals((*this) , b)
|| less((*this) , b);
} BigInteger& BigInteger::operator ++() { // prefix
(*this) = (*this) + 1;
return (*this);
} BigInteger BigInteger::operator ++(int) { // postfix
BigInteger before = (*this); (*this) = (*this) + 1; return before;
} BigInteger& BigInteger::operator --() { // prefix
(*this) = (*this) - 1;
return (*this); } BigInteger BigInteger::operator --(int) { // postfix
BigInteger before = (*this); (*this) = (*this) - 1; return before;
} BigInteger BigInteger::operator + (BigInteger b) {
BigInteger addition;
if( getSign() == b.getSign() ) { // both +ve or -ve
addition.setNumber( add(getNumber(), b.getNumber() ) );
addition.setSign( getSign() );
} else { // sign different
if( absolute() > b.absolute() ) {
addition.setNumber( subtract(getNumber(), b.getNumber() ) );
addition.setSign( getSign() );
} else {
addition.setNumber( subtract(b.getNumber(), getNumber() ) );
addition.setSign( b.getSign() );
}
}
if(addition.getNumber() == "0") // avoid (-0) problem
addition.setSign(false); return addition;
} BigInteger BigInteger::operator - (BigInteger b) {
b.setSign( ! b.getSign() ); // x - y = x + (-y)
return (*this) + b;
} BigInteger BigInteger::operator * (BigInteger b) {
BigInteger mul; mul.setNumber( multiply(getNumber(), b.getNumber() ) );
mul.setSign( getSign() != b.getSign() ); if(mul.getNumber() == "0") // avoid (-0) problem
mul.setSign(false); return mul;
} // Warning: Denomerator must be within "long long" size not "BigInteger"
BigInteger BigInteger::operator / (BigInteger b) {
long long den = toInt( b.getNumber() );
BigInteger div; div.setNumber( divide(getNumber(), den).first );
div.setSign( getSign() != b.getSign() ); if(div.getNumber() == "0") // avoid (-0) problem
div.setSign(false); return div;
} // Warning: Denomerator must be within "long long" size not "BigInteger"
BigInteger BigInteger::operator % (BigInteger b) {
long long den = toInt( b.getNumber() ); BigInteger rem;
long long rem_int = divide(number, den).second;
rem.setNumber( toString(rem_int) );
rem.setSign( getSign() != b.getSign() ); if(rem.getNumber() == "0") // avoid (-0) problem
rem.setSign(false); return rem;
} BigInteger& BigInteger::operator += (BigInteger b) {
(*this) = (*this) + b;
return (*this);
} BigInteger& BigInteger::operator -= (BigInteger b) {
(*this) = (*this) - b;
return (*this);
} BigInteger& BigInteger::operator *= (BigInteger b) {
(*this) = (*this) * b;
return (*this);
} BigInteger& BigInteger::operator /= (BigInteger b) {
(*this) = (*this) / b;
return (*this);
} BigInteger& BigInteger::operator %= (BigInteger b) {
(*this) = (*this) % b;
return (*this);
} BigInteger& BigInteger::operator [] (int n) {
return *(this + (n*sizeof(BigInteger)));
} BigInteger BigInteger::operator -() { // unary minus sign
return (*this) * -1;
} BigInteger::operator string() { // for conversion from BigInteger to string
string signedString = ( getSign() ) ? "-" : ""; // if +ve, don't print + sign
signedString += number;
return signedString;
} bool BigInteger::equals(BigInteger n1, BigInteger n2) {
return n1.getNumber() == n2.getNumber()
&& n1.getSign() == n2.getSign();
} bool BigInteger::less(BigInteger n1, BigInteger n2) {
bool sign1 = n1.getSign();
bool sign2 = n2.getSign(); if(sign1 && ! sign2) // if n1 is -ve and n2 is +ve
return true; else if(! sign1 && sign2)
return false; else if(! sign1) { // both +ve
if(n1.getNumber().length() < n2.getNumber().length() )
return true;
if(n1.getNumber().length() > n2.getNumber().length() )
return false;
return n1.getNumber() < n2.getNumber();
} else { // both -ve
if(n1.getNumber().length() > n2.getNumber().length())
return true;
if(n1.getNumber().length() < n2.getNumber().length())
return false;
return n1.getNumber().compare( n2.getNumber() ) > 0; // greater with -ve sign is LESS
}
} bool BigInteger::greater(BigInteger n1, BigInteger n2) {
return ! equals(n1, n2) && ! less(n1, n2);
} string BigInteger::add(string number1, string number2) {
string add = (number1.length() > number2.length()) ? number1 : number2;
char carry = '0';
int differenceInLength = abs( (int) (number1.size() - number2.size()) ); if(number1.size() > number2.size())
number2.insert(0, differenceInLength, '0'); // put zeros from left else// if(number1.size() < number2.size())
number1.insert(0, differenceInLength, '0'); for(int i=number1.size()-1; i>=0; --i) {
add[i] = ((carry-'0')+(number1[i]-'0')+(number2[i]-'0')) + '0'; if(i != 0) {
if(add[i] > '9') {
add[i] -= 10;
carry = '1';
} else
carry = '0';
}
}
if(add[0] > '9') {
add[0]-= 10;
add.insert(0,1,'1');
}
return add;
} string BigInteger::subtract(string number1, string number2) {
string sub = (number1.length()>number2.length())? number1 : number2;
int differenceInLength = abs( (int)(number1.size() - number2.size()) ); if(number1.size() > number2.size())
number2.insert(0, differenceInLength, '0'); else
number1.insert(0, differenceInLength, '0'); for(int i=number1.length()-1; i>=0; --i) {
if(number1[i] < number2[i]) {
number1[i] += 10;
number1[i-1]--;
}
sub[i] = ((number1[i]-'0')-(number2[i]-'0')) + '0';
} while(sub[0]=='0' && sub.length()!=1) // erase leading zeros
sub.erase(0,1); return sub;
} string BigInteger::multiply(string n1, string n2) {
if(n1.length() > n2.length())
n1.swap(n2); string res = "0";
for(int i=n1.length()-1; i>=0; --i) {
string temp = n2;
int currentDigit = n1[i]-'0';
int carry = 0; for(int j=temp.length()-1; j>=0; --j) {
temp[j] = ((temp[j]-'0') * currentDigit) + carry; if(temp[j] > 9) {
carry = (temp[j]/10);
temp[j] -= (carry*10);
} else
carry = 0; temp[j] += '0'; // back to string mood
} if(carry > 0)
temp.insert(0, 1, (carry+'0')); temp.append((n1.length()-i-1), '0'); // as like mult by 10, 100, 1000, 10000 and so on res = add(res, temp); // O(n)
} while(res[0] == '0' && res.length()!=1) // erase leading zeros
res.erase(0,1); return res;
} pair<string, long long> BigInteger::divide(string n, long long den) {
long long rem = 0;
string result;
result.resize(MAX); for(int indx=0, len = n.length(); indx<len; ++indx) {
rem = (rem * 10) + (n[indx] - '0');
result[indx] = rem / den + '0';
rem %= den;
}
result.resize( n.length() ); while( result[0] == '0' && result.length() != 1)
result.erase(0,1); if(result.length() == 0)
result = "0"; return make_pair(result, rem);
} string BigInteger::toString(long long n) {
stringstream ss;
string temp; ss << n;
ss >> temp; return temp;
} long long BigInteger::toInt(string s) {
long long sum = 0; for(int i=0; i<(int)s.length(); i++)
sum = (sum*10) + (s[i] - '0'); return sum;
} int main()
{
string a, b;
BigInteger bia, bib, bic; while(cin >> a >> b) {
bia.setNumber(a);
bib.setNumber(b); bic = bia * bib; cout << bic.getNumber() << endl;
} return 0;
}

转载于:https://www.cnblogs.com/tigerisland/p/7564133.html

POJ2389 Bull Math【大数】的更多相关文章

  1. POJ2389 Bull Math

    /* POJ2389 Bull Math http://poj.org/problem?id=2389 高精度乘法 * */ #include <cstring> #include < ...

  2. [PKU2389]Bull Math (大数运算)

    Description Bulls are so much better at math than the cows. They can multiply huge integers together ...

  3. Poj OpenJudge 百练 2389 Bull Math

    1.Link: http://poj.org/problem?id=2389 http://bailian.openjudge.cn/practice/2389/ 2.Content: Bull Ma ...

  4. BZOJ1754: [Usaco2005 qua]Bull Math

    1754: [Usaco2005 qua]Bull Math Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 374  Solved: 227[Submit ...

  5. 1754: [Usaco2005 qua]Bull Math

    1754: [Usaco2005 qua]Bull Math Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 398  Solved: 242[Submit ...

  6. POJ 2389 Bull Math(水~Java -大数相乘)

    题目链接:http://poj.org/problem?id=2389 题目大意: 大数相乘. 解题思路: java BigInteger类解决 o.0 AC Code: import java.ma ...

  7. BZOJ 1754: [Usaco2005 qua]Bull Math

    Description Bulls are so much better at math than the cows. They can multiply huge integers together ...

  8. poj 2389.Bull Math 解题报告

    题目链接:http://poj.org/problem?id=2389 题目意思:就是大整数乘法. 题目中说每个整数不超过 40 位,是错的!!!要开大点,这里我开到100. 其实大整数乘法还是第一次 ...

  9. 【BZOJ】1754: [Usaco2005 qua]Bull Math

    [算法]高精度乘法 #include<cstdio> #include<algorithm> #include<cstring> using namespace s ...

随机推荐

  1. 《Three.js 入门指南》3.1.1 - 基本几何形状 -圆柱体(CylinderGeometry)

    3.1 基本几何形状 圆柱体(CylinderGeometry) 构造函数: THREE.CylinderGeometry(radiusTop, radiusBottom, height, radiu ...

  2. 获取data 数据

    export function getData(el, name, val) { const prefix = 'data-' if (val) { return el.setAttribute(pr ...

  3. Y分形的平面微带天线生成过程

    Y分形的平面微带天线生成过程 本文介绍了使用Altium Designer脚本程序生成Y型天线的过程,在窗体中线宽.迭代次数,边框长度可以直接设置. Y分形天线用户界面由一个窗体.1个TImage控件 ...

  4. 字符串截取及切割,正则表达式,expect预期交互

                                            字符串截取及切割,正则表达式,expect预期交互 案例1:字符串截取及切割 案例2:字符串初值的处理 案例3:expe ...

  5. Spring(三):bean的自动装配

    Bean的自动装配 自动装配是Spring满足bean依赖的一种方式. Spring会在上下文中自动寻找,并自动给bean装配属性 Spring中三种装配方式 在xml中显式的配置. 在java中显式 ...

  6. 浅谈jQuery中的eq()与DOM中element.[]的区别

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  7. HTTP协议经典面试题整理及答案详解

    无论你是Java.PHP开发者,还是运维人员,只要从事互联网行业,面试时都可能被问到HTTP协议相关知识.历时多天的呕心沥血,为你总结了HTTP协议的经典面试题.由于涉及内容比较繁杂不方便记忆,建议收 ...

  8. spark rdd元素println

    1.spark api主要分两种:转换操作和行动操作.如果在转化操作中println spark打印了 我也看不到. val result = sqlContext.sql(sql) val resu ...

  9. iOS技能 - 最新美团、百度、腾讯、头条、阿里 面试题目记录

    关于面试题,可能没那么多时间来总结答案,有什么需要讨论的地方欢迎大家指教.主要记录一下准备过程,和面试的一些总结,希望能帮助到正在面试或者将要面试的同学吧. 美团 一面 1.简历上写的项目问了一遍,然 ...

  10. AJ学IOS 之CoreLocation地理编码小Demo输入城市得到经纬度

    AJ分享,必须精品 一:效果 输入地名,可以得到相应的经纬度,知识为了学习写的小Demo 二:实现步骤 一 :首先获取用户输入的位置. 二 :创建地理编码对象. 三 :利用地理编码对象编码,根据传入的 ...