前期准备工作参考:https://www.cnblogs.com/ratels/p/11144881.html

基于CNN算法利用Keras框架编写代码实现对Minst数据分类识别:

from keras.datasets import mnist
from keras.utils import to_categorical

train_X, train_y = mnist.load_data()[0]
train_X = train_X.reshape(-1, 28, 28, 1)
train_X = train_X.astype('float32')
train_X /= 255
train_y = to_categorical(train_y, 10)

from keras.models import Sequential
from keras.layers import Conv2D, MaxPool2D, Flatten, Dropout, Dense
from keras.losses import categorical_crossentropy
from keras.optimizers import Adadelta

model = Sequential()
model.add(Conv2D(32, (5,5), activation='relu', input_shape=[28, 28, 1]))
model.add(Conv2D(64, (5,5), activation='relu'))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dropout(0.5))
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))

model.compile(loss=categorical_crossentropy,
             optimizer=Adadelta(),
             metrics=['accuracy'])

batch_size = 64
epochs = 5
model.fit(train_X, train_y,
         batch_size=batch_size,
         epochs=epochs)

test_X, test_y = mnist.load_data()[1]
test_X = test_X.reshape(-1, 28, 28, 1)
test_X = test_X.astype('float32')
test_X /= 255
test_y = to_categorical(test_y, 10)
loss, accuracy = model.evaluate(test_X, test_y, verbose=1)
print('loss:%.4f accuracy:%.4f' %(loss, accuracy))

正在训练:

训练完成,返回信息:

参考:

https://www.jianshu.com/p/3a8b310227e6

Keras入门——(2)卷积神经网络CNN的更多相关文章

  1. 写给程序员的机器学习入门 (八) - 卷积神经网络 (CNN) - 图片分类和验证码识别

    这一篇将会介绍卷积神经网络 (CNN),CNN 模型非常适合用来进行图片相关的学习,例如图片分类和验证码识别,也可以配合其他模型实现 OCR. 使用 Python 处理图片 在具体介绍 CNN 之前, ...

  2. 深度学习:Keras入门(二)之卷积神经网络(CNN)

    说明:这篇文章需要有一些相关的基础知识,否则看起来可能比较吃力. 1.卷积与神经元 1.1 什么是卷积? 简单来说,卷积(或内积)就是一种先把对应位置相乘然后再把结果相加的运算.(具体含义或者数学公式 ...

  3. 深度学习:Keras入门(二)之卷积神经网络(CNN)【转】

    本文转载自:https://www.cnblogs.com/lc1217/p/7324935.html 说明:这篇文章需要有一些相关的基础知识,否则看起来可能比较吃力. 1.卷积与神经元 1.1 什么 ...

  4. 深度学习:Keras入门(二)之卷积神经网络(CNN)(转)

    转自http://www.cnblogs.com/lc1217/p/7324935.html 1.卷积与神经元 1.1 什么是卷积? 简单来说,卷积(或内积)就是一种先把对应位置相乘然后再把结果相加的 ...

  5. 卷积神经网络(CNN)学习笔记1:基础入门

    卷积神经网络(CNN)学习笔记1:基础入门 Posted on 2016-03-01   |   In Machine Learning  |   9 Comments  |   14935  Vie ...

  6. TensorFlow 2.0 深度学习实战 —— 浅谈卷积神经网络 CNN

    前言 上一章为大家介绍过深度学习的基础和多层感知机 MLP 的应用,本章开始将深入讲解卷积神经网络的实用场景.卷积神经网络 CNN(Convolutional Neural Networks,Conv ...

  7. 卷积神经网络(CNN)前向传播算法

    在卷积神经网络(CNN)模型结构中,我们对CNN的模型结构做了总结,这里我们就在CNN的模型基础上,看看CNN的前向传播算法是什么样子的.重点会和传统的DNN比较讨论. 1. 回顾CNN的结构 在上一 ...

  8. 卷积神经网络(CNN)反向传播算法

    在卷积神经网络(CNN)前向传播算法中,我们对CNN的前向传播算法做了总结,基于CNN前向传播算法的基础,我们下面就对CNN的反向传播算法做一个总结.在阅读本文前,建议先研究DNN的反向传播算法:深度 ...

  9. 卷积神经网络CNN总结

    从神经网络到卷积神经网络(CNN)我们知道神经网络的结构是这样的: 那卷积神经网络跟它是什么关系呢?其实卷积神经网络依旧是层级网络,只是层的功能和形式做了变化,可以说是传统神经网络的一个改进.比如下图 ...

  10. 【深度学习系列】手写数字识别卷积神经--卷积神经网络CNN原理详解(一)

    上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可 ...

随机推荐

  1. C#加密解密(AES)-AESHelper

    原文地址:https://ken.io/note/csharp-aesencrypt using System; namespace Encrypt { public class AESHelper ...

  2. 探讨 Git 代码托管平台的若干问题

    关于 Git 版本控制软件种类繁多,维基百科收录的最早的版本控制系统是 1972 年贝尔实验室开发的 Source Code Control System.1986 年 Concurrent Vers ...

  3. 使用 vant 的 v-lazy 实现图片 vue 在移动端的懒加载

    官方文档:https://youzan.github.io/vant/#/zh-CN/lazyload 引入 Lazyload 是 Vue 指令,使用前需要对指令进行注册 import Vue fro ...

  4. 二叉树性质 n0=n2+1

    假设树的节点个数为n,那么n=n0+n1+n2,并且边的个数等于n-1,那么 n-1=n22+n1 则 n0+n1+n2-1=n22+n1,即n0=n2+1.

  5. dfs & bfs总结

    dfs 最简单的三种形式递归总结 bfs 百度https://baike.baidu.com/item/%E5%AE%BD%E5%BA%A6%E4%BC%98%E5%85%88%E6%90%9C%E7 ...

  6. 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用正则化

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...

  7. spring boot properties文件与yaml文件的区别

    编写是没有提示的话在pom中添加依赖,如下: <!-- 配置文件处理器 编写配置时会有提示 --> <dependency> <groupId>org.spring ...

  8. ANSYS布尔运算APDL

    目录 1.交运算 2.加运算 3.减运算 4.分割 5. 搭接 6. 互分 6.粘结 1.交运算 交运算的结果是由每个初始图元的共同部分,形成一个新的图元. 命令 功能 备注 LINL 线与线的交 A ...

  9. Pandas的Categorical Data类型

    pandas从0.15版开始提供分类数据类型,用于表示统计学里有限且唯一性数据集,例如描述个人信息的性别一般就男和女两个数据常用'm'和'f'来描述,有时也能对应编码映射为0和1.血型A.B.O和AB ...

  10. 用Jackson进行Json序列化时的常用注解

    Jackson时spring boot默认使用的json格式化的包,它的几个常用注解: @JsonIgnore 用在属性上面,在序列化和反序列化时都自动忽略掉该属性 @JsonProperty(&qu ...