【树形dp】 Bzoj 4472 Salesman
题目
某售货员小T要到若干城镇去推销商品,由于该地区是交通不便的山区,任意两个城镇 之间都只有唯一的可能经过其它城镇的路线。 小T 可以准确地估计出在每个城镇停留的净收 益。这些净收益可能是负数,即推销商品的利润抵不上花费。由于交通不便,小T经过每个 城镇都需要停留,在每个城镇的停留次数与在该地的净收益无关,因为很多费用不是计次收 取的,而每个城镇对小T的商品需求也是相对固定的,停留一次后就饱和了。每个城镇为了 强化治安,对外地人的最多停留次数有严格的规定。请你帮小T 设计一个收益最大的巡回方 案,即从家乡出发,在经过的每个城镇停留,最后回到家乡的旅行方案。你的程序只需输出 最大收益,以及最优方案是否唯一。方案并不包括路线的细节,方案相同的标准是选择经过 并停留的城镇是否相同。因为取消巡回也是一种方案,因此最大收益不会是负数。小T 在家 乡净收益是零,因为在家乡是本地人,家乡对小 T当然没有停留次数的限制。
Input
输入的第一行是一个正整数n(5<=n<=100000),表示城镇数目。城镇以1到n的数命名。小T 的家乡命 名为1。第二行和第三行都包含以空格隔开的n-1个整数,第二行的第i个数表示在城镇 i+1停留的净收益。第三行的第i个数表示城镇i+1规定的最大停留次数。所有的最大 停留次数都不小于2。接下来的n-1行每行两个1到n的正整数x,y,之间以一个空格 隔开,表示x,y之间有一条不经过其它城镇的双向道路。输入数据保证所有城镇是连通的。
Output
输出有两行,第一行包含一个自然数,表示巡回旅行的最大收益。如果该方案唯一,在 第二行输出“solution is unique”,否则在第二行输出“solution is not unique”。
Sample Input
9
-3 -4 2 4 -2 3 4 6
4 4 2 2 2 2 2 2
1 2
1 3
1 4
2 5
2 6
3 7
4 8
4 9
Sample Output
9
solution is unique
样例解释
最佳路线包括城镇 1,2, 4, 5, 9。
大致题意
考虑一下,设cnt[i]表示在i点的最多停留次数,那么cnt[i]-1就是最多能进入的子树的个数(因为到达时必须停留一次) 然后发现子树里不管怎么走,对该点的停留次数的影响都是1,所以每一个子树里肯定要走出最优的方案 那么我们设dp[v]表示v这一整棵子树的最优方案的权值,考虑u点如何选择才能使该点最优 首先自己必须选,然后把所有儿子的dp值排个序,取前cnt[u]-1个或一直取到第一个dp为0的值,不难发现没有方案会比他更优 然后存儿子的dp值的话可以用vector 现在的问题就是怎么判断方案是否唯一 首先,如果儿子的dp值的前cnt[u]-1个里有0,那么该点的最优方案肯定不唯一(因为0那个点可以选或不选) 其次,如果第cnt[u]-1和cnt[u]个都大于0且相等,那么方案也不唯一(因为这两个都可以选) 然后如果子树的方案不唯一,自己的方案也不唯一 所以用结构体存储子树的dp,分别记录最大权值和方案是否唯一,不断向上dp即可
放代码
#include <cstring>
#include <cstdio>
#include <iostream>
#include <queue> using namespace std; const int MAXX = ; int hed[MAXX], ver[MAXX << ], nxt[MAXX << ], val[MAXX], cnt[MAXX], dp[MAXX];
bool g[MAXX];
int n, tot; inline void add(int x, int y) {
ver[++tot] = y;
nxt[tot] = hed[x];
hed[x] = tot;
}
inline void dfs(int x,int f) {
priority_queue<pair<int ,int > > q;
for (int i = hed[x]; i; i = nxt[i]) {
int y = ver[i];
if (y == f) continue;
dfs (y, x);
q.push(make_pair(dp[y],g[y]));
}
int num = ;
int now = ;
bool flag = ;
while (!q.empty() && num < cnt[x] - ) {
if(q.top().first < ) break;
else if (q.top().first == ) {
flag |= ;
break;
}else {
now += q.top().first;
flag |= q.top().second;
}
q.pop();
num++;
}
dp[x] = now + val[x]; g[x] = flag;
}
int main() {
scanf("%d", &n);
cnt[] = 1e9;
for (int i = ; i <= n; ++i) scanf("%d", &val[i]);
for (int i = ; i <= n; ++i) scanf("%d", &cnt[i]);
for (int i = ; i < n; ++i) {
int x, y;
scanf("%d%d", &x, &y);
add(x, y);
add(y, x);
}
dfs(, );
printf("%d\n",dp[]);
if (g[] == ) printf("solution is unique");
else printf("solution is not unique");
return ;
}
【树形dp】 Bzoj 4472 Salesman的更多相关文章
- bzoj 4472 salesman
Written with StackEdit. Description 某售货员小\(T\) 要到若干城镇去推销商品,由于该地区是交通不便的山区,任意两个城镇 之间都只有唯一的可能经过其它城镇的路线. ...
- BZOJ 4472 salesman 题解
题目 某售货员小T要到若干城镇去推销商品,由于该地区是交通不便的山区,任意两个城镇之间都只有唯一的可能经过其它城镇的路线.小T可以准确地估计出在每个城镇停留的净收益.这些净收益可能是负数,即推销商品的 ...
- BZOJ 4472 [Jsoi2015]salesman(树形DP)
4472: [Jsoi2015]salesman Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 417 Solved: 192[Submit][St ...
- [BZOJ 4033] [HAOI2015] T1 【树形DP】
题目链接:BZOJ - 4033 题目分析 使用树形DP,用 f[i][j] 表示在以 i 为根的子树,有 j 个黑点的最大权值. 这个权值指的是,这个子树内部的点对间距离的贡献,以及 i 和 Fat ...
- [BZOJ 1907] 树的路径覆盖 【树形DP】
题目链接:BZOJ - 1907 题目分析 使用树形 DP,f[x][0] 表示以 x 为根的子树不能与 x 的父亲连接的最小路径数(即 x 是一个折线的拐点). f[x][1] 表示以 x 为根的子 ...
- bzoj 4871: [Shoi2017]摧毁“树状图” [树形DP]
4871: [Shoi2017]摧毁"树状图" 题意:一颗无向树,选两条边不重复的路径,删去选择的点和路径剩下一些cc,求最多cc数. update 5.1 : 刚刚发现bzoj上 ...
- BZOJ.3227.[SDOI2008]红黑树tree(树形DP 思路)
BZOJ orz MilkyWay天天做sxt! 首先可以树形DP:\(f[i][j][0/1]\)表示\(i\)个点的子树中,黑高度为\(j\),根节点为红/黑节点的最小红节点数(最大同理). 转移 ...
- BZOJ.2159.Crash的文明世界(斯特林数 树形DP)
BZOJ 洛谷 挺套路但并不难的一道题 \(Description\) 给定一棵\(n\)个点的树和\(K\),边权为\(1\).对于每个点\(x\),求\(S(x)=\sum_{i=1}^ndis( ...
- BZOJ.4199.[NOI2015]品酒大会(后缀自动机 树形DP)
BZOJ 洛谷 后缀数组做法. 洛谷上SAM比SA慢...BZOJ SAM却能快近一倍... 只考虑求极长相同子串,即所有后缀之间的LCP. 而后缀的LCP在后缀树的LCA处.同差异这道题,在每个点处 ...
随机推荐
- 【Tomcat】JSP使用Session、Cookie实现购物车
购物界面shop.jsp 初始页面 添加商品后,在session中设置属性,重定向回到shop.jsp,然后根据session的内容显示结果 Cookie设置setMaxAge可以延长session的 ...
- java方法句柄-----1.方法句柄类型、调用
目录 方法句柄 1.方法句柄的类型 1.1MethodType类的对象实例的创建 1.1.1 通过指定参数和返回值的类型来创建MethodType.[显式地指定返回值和参数的类型] 1.1.2 通过静 ...
- Java实现 LeetCode 135 分发糖果
135. 分发糖果 老师想给孩子们分发糖果,有 N 个孩子站成了一条直线,老师会根据每个孩子的表现,预先给他们评分. 你需要按照以下要求,帮助老师给这些孩子分发糖果: 每个孩子至少分配到 1 个糖果. ...
- Java实现 LeetCode 78 子集
78. 子集 给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集). 说明:解集不能包含重复的子集. 示例: 输入: nums = [1,2,3] 输出: [ [3], [1], ...
- 第三届蓝桥杯C++B组国(决)赛真题
解题代码部分来自网友,如果有不对的地方,欢迎各位大佬评论 题目1.星期几 1949年的国庆节(10月1日)是星期六. 今年(2012)的国庆节是星期一. 那么,从建国到现在,有几次国庆节正好是星期日呢 ...
- 学习Redis好一阵了,我对它有了一些新的看法
前言 本篇文章不是一篇具体的教程,我打算记录一下自己对Redis的一些思考.说来惭愧,我刚接触Redis的时候只是简单地使用了一下,背了一些面试题,就在简历上写下了Redis这个技能点. 我们能在网络 ...
- ubuntu18启动zabbix-agent失败/故障记录
故障现象 ubuntu 16 升级18 之后 安装了zabbix agent 今天突然agent掉了 上去的时候发现 报错: 后来打算-c 启动然后发现 /usr/sbin/zabbix_agentd ...
- @Component、@Service、@Controller、@Rrepository说明
自己开发了一个股票智能分析软件,功能很强大,需要的点击下面的链接获取: https://www.cnblogs.com/bclshuai/p/11380657.html 1 Spring容 ...
- WAMP3.1 安装php_redis.dll扩展并配置php.ini
一. 下载对应版本的php_redis.dll 下载地址:http://windows.php.net/downloads/pecl/releases/redis 注:php7目录下有php7.dll ...
- SpringBoot整合分布式ZooKeeper和Dubbo
ZooKeeper ZooKeeper是一个分布式的,开放远吗的分布式应用程序协调服务.它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护.域名服务.分布式同步.组服务等. 服务提供者 ...