首先有个很奇妙而且很有用的性质:每个二叉树对应唯一的中序遍历,然后每个二叉树出现概率相同。所以n个节点的二叉树形态是n!种(题目中说了*n!已经是提示了),对每种方案求和即可得到期望。令f[i]表示i个节点的子树,根深度为1时,所有点的期望深度之和乘i!的值,令g[i]表示i个节点的子树,期望两两路径之和乘i!的值。

然后得到f[i]=i*i!+ΣC(i-1,L)(f[L]*R!+f[R]*L!),g[i]=ΣC(i-1,L)(g[L]*R!+g[R]*L!+f[L]*R!*(R+1)+f[R]*L!*(L+1)),其中0<=L<i,L、R为左/右子树大小,只需要枚举L即可(因为R=i-1-L),复杂度O(n2)

这题这么水的吗qwq?其实当模数做NTT时,貌似可以分治NTT优化O(nlog2n),反正我不会就不管了。

#include<bits/stdc++.h>
using namespace std;
const int N=;
int n,mod,c[N][N],fac[N],f[N],g[N];
int main()
{
scanf("%d%d",&n,&mod);
fac[]=c[][]=;
for(int i=;i<=n;i++)
{
c[i][]=,fac[i]=1ll*fac[i-]*i%mod;
for(int j=;j<=i;j++)c[i][j]=(c[i-][j-]+c[i-][j])%mod;
}
f[]=;
for(int i=;i<=n;i++)
{
for(int L=;L<i;L++)
{
int R=i--L,F,G;
F=(1ll*f[L]*fac[R]+1ll*f[R]*fac[L])%mod;
G=(1ll*f[L]*fac[R]%mod*(R+)+1ll*f[R]*fac[L]%mod*(L+)+1ll*g[L]*fac[R]+1ll*g[R]*fac[L])%mod;
f[i]=(f[i]+1ll*F*c[i-][L])%mod;
g[i]=(g[i]+1ll*G*c[i-][L])%mod;
}
f[i]=(f[i]+1ll*i*fac[i])%mod;
}
printf("%d",g[n]);
}

[HAOI2018]苹果树(组合数学)的更多相关文章

  1. [HAOI2018]苹果树(组合数学,计数)

    [HAOI2018]苹果树 cx巨巨给我的大火题. 感觉这题和上次考试gcz讲的那道有标号树的形态(不记顺序)计数问题很类似. 考虑如果对每个点对它算有贡献的其他点很麻烦,不知怎么下手.这个时候就想到 ...

  2. [BZOJ5305][HAOI2018]苹果树 组合数学

    链接 小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C 发现每一天这棵树都会生长出一个新的结点. 第一天的时候, 果树会长出一个根结点, 以后每一天, ...

  3. 【BZOJ5305】[HAOI2018]苹果树(组合计数)

    [BZOJ5305][HAOI2018]苹果树(组合计数) 题面 BZOJ 洛谷 题解 考虑对于每条边计算贡献.每条边的贡献是\(size*(n-size)\). 对于某个点\(u\),如果它有一棵大 ...

  4. [洛谷P4492] [HAOI2018]苹果树

    洛谷题目链接:[HAOI2018]苹果树 题目背景 HAOI2018 Round2 第一题 题目描述 小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C ...

  5. BZOJ5305 [Haoi2018]苹果树 【组合数学】

    题目链接 BZOJ5305 题解 妙啊 要求的是所有可能的树形的所有点对距离和 直接考虑点的贡献肯定想不出,这样的所有点对距离问题通常转化为边的贡献 考虑一条边会产生多少贡献 我们枚举\(i\)节点的 ...

  6. [BZOJ5305][Haoi2018]苹果树 组合数

    题目描述 小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C 发现每一天这棵树都会生长出一个新的结点. 第一天的时候, 果树会长出一个根结点, 以后每一 ...

  7. [BZOJ5305] [HAOI2018] 苹果树 数学 组合计数

    Summary 题意很清楚: 小 \(C\) 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 \(C\) 发现每一天这棵树都会生长出一个新的结点. 第一天的时候 ...

  8. Luogu4492 [HAOI2018]苹果树 【动态规划】

    题目分析: 思路不难想,考虑三个dp状态$f,g,d$. $g[i]$表示有$i$个点的堆的数量 $d[i]$表示有$i$个点的情况下所有的方案数中点到根的距离和 $f[i]$表示要求的答案. 不难发 ...

  9. HAOI2018苹果树

    题解 首先所有生成树的情况树是\(n!\)的,因为第一次有1中方法,第二次有两种放法,以此类推... 然后我们发现距离这种东西可以直接枚举每条边算贡献. 于是我们枚举了一个点\(i\),又枚举了这个点 ...

随机推荐

  1. 两表关联更新数据——oracle

    from testb b where b.id=a.id) ; (where exists(select 1 from testb b where b.id=a.id):如果没有这个条件,不匹配的选项 ...

  2. SpringBoot安全认证Security

    一.基本环境搭建 父pom依赖 <parent> <groupId>org.springframework.boot</groupId> <artifactI ...

  3. vs使用opencv总提示igdrclneo64.dll异常.exe: 0xC0000005:的解决方法

    最近项目中要使用opencv库,搭建好环境,使用接口的时候,总提示 igdrclneo64.dll报错崩溃,一直怀疑是自己程序的问题,后面经过一系列的查资料才解决 解决办法: 本地环境:vs2015+ ...

  4. 2020牛客寒假算法基础集训营5 部分题解(BDEH)

    B: 牛牛战队的比赛地(二分做法)题意:二维平面给定n个点,在x轴找一点使得到n个点距离的最大值最小. 思路:我们可以将问题转化为在x轴找到一个圆心,使得该圆包含这n个点且半径最小,这样就变成了最小圆 ...

  5. Pandas_one-hot encoding与dummy encoding

    Pandas_特征编码 one-hot encoding 基本思想是将离散型特征的每一种取值都看成一种状态,保证每一个取值只会使得一种状态处于激活状态. 编码函数pd.get_dummies() du ...

  6. 阿里巴巴技术总监全解中台架构19页ppt

    //初创时,快速上线 单体架构至少撑了3年 //分布式,中间件基座 //平台化,内部是简单服务,对于业务侧就是快速上线 //平台化之后由于多平台协作问题,再次出现问题: 效率仍然不能匹配业务发展之需要 ...

  7. 十一、CI框架之输出用户IP地址

    一.代码如下: 二.效果如下: 不忘初心,如果您认为这篇文章有价值,认同作者的付出,可以微信二维码打赏任意金额给作者(微信号:382477247)哦,谢谢.

  8. /Array.CreateInstance创建类型为int,长度为5的数组

    using System;using System.Collections.Generic;using System.Linq;using System.Text; namespace Console ...

  9. DevOps专题|玩转Kubernetes网络

    Kubernetes无疑是当前最火热的容器编排工具,网络是kubernetes中非常重要的一环, 本文主要介绍一些相应的网络原理及术语,以及kubernetes中的网络方案和对比. Kubernete ...

  10. 不同的二叉搜索树&II

    不同的二叉搜索树 只要求个数,递推根节点分割左右子树即可 class Solution { public int numTrees(int n) { int []dp=new int[n+1]; fo ...