神经网络的图解

感知机,是人工设置权重。让它的输出值符合预期。

而神经网络的一个重要性质是它可以自动地从数据中学习到合适的权重参数。

如果用图来表示神经网络,最左边的一列称为输入层,最右边的一列称为输出层,中间的一列称为中间层。中间层有时也称为隐藏层.如下图:

之前,文章中:https://www.cnblogs.com/zhangshengdong/p/12613674.html 提到了激活函数(activation function),用于激活神经元。

一般的激活函数有,sigmoid函数,ReLU函数等。

sigmoid函数

sigmoid函数的公式:

\[h(x)=\frac{1}{(1+\mathrm{e}^{-x})}
\]

比如,向sigmoid函数输入1.0或2.0后,就会有某个值被输出,类似h(1.0) = 0.731 ...、h(2.0) = 0.880 ...。是一个非线性函数。

代码如下:

import numpy as np
import matplotlib.pylab as plt def sigmoid(x):
return 1 / (1 + np.exp(-x)) X = np.arange(-5.0, 5.0, 0.1)
Y = sigmoid(X)
plt.plot(X, Y)
plt.ylim(-0.1, 1.1)
plt.show()

图形如下:

如果考虑把线性函数 h(x) = cx 作为激活函数,把y(x) = h(h(h(x)))的运算对应3层神经网络。这个运算会进行y(x) = c * c * c * x的乘法运算,但是同样的处理可以由y(x) = ax(注意,\(a=c^3\))这一次乘法运算(即没有隐藏层的神经网络)来表示。如本例所示,使用线性函数时,无法发挥多层网络带来的优势。因此,为了发挥叠加层所带来的优势,激活函数必须使用非线性函数。

ReLU函数

ReLU函数的公式

\[h(x)=
\begin{cases}
x (x > 0)\\
0 (x <= 0)
\end{cases}
\]

最近在神经网络中,也有很多场景下使用最近使用ReLU(Rectified Linear Unit)函数

代码如下:

# coding: utf-8
import numpy as np
import matplotlib.pylab as plt def relu(x):
return np.maximum(0, x) x = np.arange(-5.0, 5.0, 0.1)
y = relu(x)
plt.plot(x, y)
plt.ylim(-1.0, 5.5)
plt.show()

图形如下:

【深度学习】Neural networks(神经网络)(一)的更多相关文章

  1. Stanford机器学习---第五讲. 神经网络的学习 Neural Networks learning

    原文 http://blog.csdn.net/abcjennifer/article/details/7758797 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  2. 【翻译】给初学者的 Neural Networks / 神经网络 介绍

    本文翻译自 SATYA MALLICK 的  "Neural Networks : A 30,000 Feet View for Beginners" 原文链接: https:// ...

  3. 深度学习之循环神经网络RNN概述,双向LSTM实现字符识别

    深度学习之循环神经网络RNN概述,双向LSTM实现字符识别 2. RNN概述 Recurrent Neural Network - 循环神经网络,最早出现在20世纪80年代,主要是用于时序数据的预测和 ...

  4. 今天开始学模式识别与机器学习(PRML),章节5.1,Neural Networks神经网络-前向网络。

    今天开始学模式识别与机器学习Pattern Recognition and Machine Learning (PRML),章节5.1,Neural Networks神经网络-前向网络. 话说上一次写 ...

  5. 深度学习之卷积神经网络CNN及tensorflow代码实例

    深度学习之卷积神经网络CNN及tensorflow代码实例 什么是卷积? 卷积的定义 从数学上讲,卷积就是一种运算,是我们学习高等数学之后,新接触的一种运算,因为涉及到积分.级数,所以看起来觉得很复杂 ...

  6. 深度学习之卷积神经网络CNN及tensorflow代码实现示例

    深度学习之卷积神经网络CNN及tensorflow代码实现示例 2017年05月01日 13:28:21 cxmscb 阅读数 151413更多 分类专栏: 机器学习 深度学习 机器学习   版权声明 ...

  7. 深度学习之卷积神经网络(CNN)的应用-验证码的生成与识别

    验证码的生成与识别 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10755361.html 目录 1.验证码的制 ...

  8. 【神经网络与深度学习】卷积神经网络(CNN)

    [神经网络与深度学习]卷积神经网络(CNN) 标签:[神经网络与深度学习] 实际上前面已经发布过一次,但是这次重新复习了一下,决定再发博一次. 说明:以后的总结,还应该以我的认识进行总结,这样比较符合 ...

  9. 深度学习:卷积神经网络(convolution neural network)

    (一)卷积神经网络 卷积神经网络最早是由Lecun在1998年提出的. 卷积神经网络通畅使用的三个基本概念为: 1.局部视觉域: 2.权值共享: 3.池化操作. 在卷积神经网络中,局部接受域表明输入图 ...

  10. 深度学习FPGA实现基础知识10(Deep Learning(深度学习)卷积神经网络(Convolutional Neural Network,CNN))

    需求说明:深度学习FPGA实现知识储备 来自:http://blog.csdn.net/stdcoutzyx/article/details/41596663 说明:图文并茂,言简意赅. 自今年七月份 ...

随机推荐

  1. 10——PHP中的两种数组【索引数组】与【关联数组】

    [索引数组] 用数字作为键名的数组一般叫做索引数组.用字符串表示键的数组就是下面要介绍的关联数组.索引数组的键是整数,而且从0开始以此类推. 索引数组初始化例: <pre name=" ...

  2. 分割文件和数据(linux)

    在某些情况下,必须把文件分割成多个更小的片段.如今我们分割文件的目的比如:提高可读性.生成日志.通过Email发送文件等等. 假设我们有一个erro.log的测试文件,其大小为14M.你可以将该文件分 ...

  3. webstorm 提示 "scanning files to index..." 一直不能编译的问题

    先说一下我的操作过程吧: 下载公司的vue项目后,要用到webpack打包工具,需要按照package.json安装一些依赖,我使用了镜像后,npm install模块时候生成了一个 node_mod ...

  4. 02 layui 下载和搭建环境

    Layui官方网站 官方网站:https://www.layui.com/ 下载地址:https://res.layui.com/static/download/layui/layui-v2.5.5. ...

  5. 爬虫前奏——初谈Requests库

    什么是Requests Requests是用python语言基于urllib编写的,采用的是Apache2 Licensed开源协议的HTTP库如果你看过上篇文章关于urllib库的使用,你会发现,其 ...

  6. (转)嵌入式linux系统开发过程中遇到的——volatile

    原文地址:http://blog.csdn.net/HumorRat/article/details/5631023 对于不同的计算机体系结构,设备可能是端口映射,也可能是内存映射的.如果系统结构支持 ...

  7. react 给选中的li添加样式(转载)

    路:使用事件委托,关键:获取到的index必须转为数字,因为它是字符串 handleClick = (e) => { const nodeName = e.target.nodeName.toU ...

  8. javascript中事件概述

    事件就是用户或浏览器自身执行的某种动作.诸如click.load.和mouseover,都是事件的名字.而响应某个事件的函数就叫做事件处理程序(或事件侦听器).事件处理程序的名字以"on&q ...

  9. Python基础篇(五)_文件和数据格式化

    Python基础篇_文件和数据格式化 文件的使用:文件打开.关闭.读写 文件打开:通过open()函数打开文件,并返回一个操作文件的变量. 使用语法:<变量名> = (<文件路径以及 ...

  10. java基本类型、数组、和枚举类型

    开始之前先吐槽一下,学艺不精,面试要吃大亏,出来混迟早要还的. 别的不说了,从零开始复习基础知识 1.标识符和关键字 意义:标识符用于对变量.类.和方法的命名.规范的标识符命名可以提高程序的可读取性. ...