No1: InterpretML by Microsoft——Machine Learning Interpretability

github地址:https://github.com/microsoft/interpret

可解释性是目前机器学习中的一个重要问题。能够理解模型如何产生它所输出的内容,这是每个机器学习项目的关键。

Interpretml是微软的一个开源软件包,用于训练可解释模型和解释黑盒系统。微软在解释解为什么解释性是必要的时候说得非常好:

模型调试:为什么我的模型犯了这个错误?

检测偏差:我的模型有区别吗?

人工智能合作:我如何理解和信任模型的决策?

法规遵从性:我的模型是否满足法律要求?

高风险应用:医疗、金融、司法等。

从过去的经验看,最容易理解的模型不是很准确,而最准确的模型是不可理解的。随着复杂性的增加,解释机器学习模型的内部工作变得更加困难。于是,MicrosoftResearch开发了一种称为可解释增强机(EBM)*的算法,该算法具有高精度和可理解性。EBM使用现代机器学习技术,如 bagging 和boosting,为传统的GAM模型注入新的活力。这使它们像随机森林和梯度提升树一样准确,并且还增强了它们的可理解性和可编辑性。

此外,该算法不仅限于使用EBM,它还支持LIME、线性模型、决策树等算法。比较模型并为我们的项目挑选最好的模型从未如此简单!

而Interpretml的安装也很简单,仅需要如下几行代码:


 
pip install numpy scipy pyscaffoldpip install -U interpret
pip install -U interpret

No2:Tensor2Robot (T2R) by Google Research

github地址:https://github.com/google-research/tensor2robot

Google Research再次出现在我们推荐的Github系列项目中。因为他们拥有业务中最强大的计算能力,且他们正在将它用于机器学习。

Google最新发布了名为Tensor2Robot(T2R)的开源项目。 T2R是用于大规模深度神经网络训练、评估和推理的库。,此存储库包含分布式机器学习和强化学习基础结构。它在Alphabet内部使用,开源的目的是使Robotics @ Google的研究对于更广泛的机器人和计算机视觉社区更具可重复性。

以下是使用Tensor2Robot实现的几个项目:

  • QT-Opt(https://arxiv.org/abs/1806.10293

  • Grasp2Vec(https://github.com/google-research/tensor2robot/blob/master/research/grasp2vec)

No3:Generative Models in TensorFlow 2

Github地址:https://github.com/timsainb/tensorflow2-generative-models

这是一个在Tensorflow 2中实现大量生成模型的小项目。(TensorFlow 2.0是今年最受期待的TensorFlow版本,于不久前正式推出。)图层和优化器都是使用Keras。这些模型是针对两个数据集实现的:fashion MNIST和NSYNTH。编写网络的目的是尽可能简单和一致,同时具有可读性。因为每个网络都是自包含在notebook中的,所以它们应该可以在colab会话中轻松运行。

该存储库包含多个生成模型的TF实现,包括:

  • 生成对抗网络(GAN)

  • 自动编码器

  • 变分自动编码器(VAE)

  • VAE-GAN等。

No4:STUMPY – Time Series Data Mining

github地址:https://github.com/TDAmeritrade/stumpy

STUMPY是一个功能强大且可扩展的库,可帮助我们执行时间序列数据挖掘任务。 STUMPY旨在计算矩阵轮廓,矩阵轮廓是一个向量,它存储时间序列中任何子序列与其最近邻居之间的 z-normalized 欧几里德距离。

以下是此矩阵配置文件帮助我们执行的一些时间序列数据挖掘任务:

  • 异常发现

  • 语义分割

  • 密度估计

  • 时间序列链(时序有序的子序列模式集)

使用以下代码可以通过pip直接安装STUMPY:


 
pip install stumpy

No5:MeshCNN in PyTorch

github地址:https://github.com/ranahanocka/MeshCNN

MeshCNN是用于3D三角网格的通用深度神经网络。这些网格可用于3D形状分类或分割等任务。MeshCNN框架包括直接应用于网格边缘的卷积,池化和解除层:

卷积神经网络(CNN)非常适合处理图像和视觉数据。 CNN近年来风靡一时,随着图像相关应用的涌现而兴起:物体检测、图像分割、图像分类等,随着CNN的进步,这些都变成了可能。

而最近3D深度学习吸引了业界的兴趣,包括机器人和自动驾驶等领域。3D形状的问题在于它们本质上是不规则的。这使得像卷积这样的操作变得很困难。这也是MeshCNN发挥作用的地方。它是是用于3D三角网格的通用深度神经网络:网格是顶点,边和面的列表,它们共同定义3D对象的形状。

如果您热衷于计算机视觉,那么这对您来说是完美的存储库。 您可以通过我们的文章了解有关CNN的更多信息:

  • A Comprehensive Tutorial tolearn Convolutional Neural Networks from Scratch(A Comprehensive Tutorial to learn Convolutional Neural Networks fromScratch)

  • Architecture of ConvolutionalNeural Networks (CNNs) Demystified(A Comprehensive Tutorial to learn Convolutional Neural Networks fromScratch)

欢迎关注磐创博客资源汇总站:

http://docs.panchuang.net/

欢迎关注PyTorch官方中文教程站:

http://pytorch.panchuang.net/

推荐|近期热点机器学习git项目的更多相关文章

  1. 干货 | 近期热点机器学习git项目

    No1:PyTorchImplementation of DeepMind's BigGAN(https://github.com/huggingface/pytorch-pretrained-Big ...

  2. 近期 github 机器学习热门项目top5

    磐创智能-专注机器学习深度学习的教程网站 http://panchuang.net/ 磐创AI-智能客服,聊天机器人,推荐系统 http://panchuangai.com/ [导读]:Github是 ...

  3. 近期 github 机器学习热门项目 top5

    欢迎大家关注我们的网站和系列教程:http://panchuang.net/ ,学习更多的机器学习.深度学习的知识! 作者:Walker No1:NVIDIA's vid2vid Technique( ...

  4. 多人开发的git项目如何保持提交日志为一条直线?

    多人开发的git项目如何保持提交日志为一条直线? 一.Git的项目的git常用操作 a)Git clone 项目地址 从远程仓库克隆项目到本地 b)Git pull 从当前分支拉取更新代码 c)Git ...

  5. 推荐一本写给IT项目经理的好书

    原文地址:http://www.cnblogs.com/cbook/archive/2011/01/19/1939060.html (防止原文作者删除.只能拷贝一份了) 推荐一本写给IT项目经理的好书 ...

  6. 机器学习开源项目精选TOP30

    本文共图文结合,建议阅读5分钟. 本文为大家带来了30个广受好评的机器学习开源项目. 640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1 最近,Mybridge发布了 ...

  7. IDEA 提交项目至Git与获取Git项目

    1.IDEA提交项目至git 注:保证已安装Git分布式管理系统,没有自行百度安装git 1)在IDEA中配置Git与GitHub a)Git: File-->Settings --> V ...

  8. GitHub Python项目推荐|瓦力Devops开源项目代码部署平台持续部署

    GitHub Python项目推荐|walle - 瓦力 Devops开源项目代码部署平台 项目热度 标星(star):8418 (很不错的实用项目,大神作品,建议关注) 标星趋势 关注(watch) ...

  9. 在 CentOS 上部署 GitLab (自托管的Git项目仓库)

    参考资料https://github.com/mattias-ohlsson/gitlab-installer/blob/master/gitlab-install-el6.sh 环境准备OS: Ce ...

随机推荐

  1. 整合 KAFKA+Flink 实例(第一部分,趟坑记录)

    2017年后,一大波网络喧嚣,说流式处理如何牛叉,如何高大上,抱歉,工作满负荷,没空玩那个: 今年疫情隔离在家,无聊,开始学习 KAFKA+Flink ,目前的打算是用爬虫抓取网页数据,传递到Kafk ...

  2. 002.使用kubeadm安装kubernetes 1.17.0

    一 环境准备 1.1 环境说明 master      192.168.132.131      docker-server1 node1       192.168.132.132      doc ...

  3. beego的安装以及bee的安装和使用

    beego的安装以及bee的安装和使用 一.beego的安装 1.beego是什么 beego 是一个快速开发 Go 应用的 HTTP 框架,他可以用来快速开发 API.Web 及后端服务等各种应用, ...

  4. [红日安全]Web安全Day8 - XXE实战攻防

    本文由红日安全成员: ruanruan 编写,如有不当,还望斧正. 大家好,我们是红日安全-Web安全攻防小组.此项目是关于Web安全的系列文章分享,还包含一个HTB靶场供大家练习,我们给这个项目起了 ...

  5. node--静态服务器

    1.同步读取文件 const data = fs.readFileSync('./model/mime.json');   // 这里是添加了可以正常链接其他格式文件的服务器 const http = ...

  6. 【CSS3】自定义设置可编辑元素闪烁光标的颜色

    前言 因为业务需求, 要求我们的input框内的文本与悬浮的光标颜色不同, 这样的问题肯定在书本上很难找到解决办法, 需要通过平时的基础积累和经验. 解决方案 使用 ::first-line 伪元素 ...

  7. Windows环境下docker的安装与配置

    Docker是一种容器技术,可以在操作系统中隔离出若干个独立的程序运行环境,这些环境既可以共享宿主机的资源,另一方面他们之间相互独立,互不影响,也不会对宿主机的环境产生影响.与虚拟化技术不同的是,Do ...

  8. JavaScript的函数(一)

    ,1,在javascript中,函数即对象.函数里面的参数可以是个函数,例如: data.sort(function(a,b){return a-b;}) 函数的返回值,return语句导致函数停止执 ...

  9. Oracle根据实体类比对2个数据库结构差异(demo)

    源起 在公司做项目时 经常出现 实体结构和线上的数据结构以及公司开发库数据结构不匹配的问题 但是又不能直接把开发库导入到生产库因为生产库已经有实际数据了 所以弄了一个小工具 此处只做记录用 demo级 ...

  10. AspNetCore3.1源码解析_2_Hsts中间件

    title: "AspNetCore3.1源码解析_2_Hsts中间件" date: 2020-03-16T12:40:46+08:00 draft: false --- 概述 在 ...