Description

Mr.Dog was fired by his company. In order to support his family, he must find a new job as soon as possible. Nowadays, It's hard to have a job, since there are swelling numbers of the unemployed. So some companies often use hard tests for their recruitment.

The test is like this: starting from a source-city, you may pass through some directed roads to reach another city. Each time you reach a city, you can earn some profit or pay some fee, Let this process continue until you reach a target-city. The boss will compute the expense you spent for your trip and the profit you have just obtained. Finally, he will decide whether you can be hired.

In order to get the job, Mr.Dog managed to obtain the knowledge of the net profit Vi of all cities he may reach (a negative Vi indicates that money is spent rather than gained) and the connection between cities. A city with no roads leading to it is a source-city and a city with no roads leading to other cities is a target-city. The mission of Mr.Dog is to start from a source-city and choose a route leading to a target-city through which he can get the maximum profit.

Input

The input file includes several test cases. 
The first line of each test case contains 2 integers n and m(1 ≤ n ≤ 100000, 0 ≤ m ≤ 1000000) indicating the number of cities and roads. 
The next n lines each contain a single integer. The ith line describes the net profit of the city iVi (0 ≤ |Vi| ≤ 20000) 
The next m lines each contain two integers xy indicating that there is a road leads from city x to city y. It is guaranteed that each road appears exactly once, and there is no way to return to a previous city. 

Output

The output file contains one line for each test cases, in which contains an integer indicating the maximum profit Dog is able to obtain (or the minimum expenditure to spend)

Sample Input

6 5
1
2
2
3
3
4
1 2
1 3
2 4
3 4
5 6

Sample Output

7

Hint

题意:给出n个点的权值和m条路径, 问一条路的最大权值是多少.
思路:原本思路是BFS枚举..然而MLE了,那么只能用dp来优化空间了。。两者都是枚举所有情况,前者将每次情况存入队列时容易因为图稠密而MLE;后者仅不断更新dp数组,在空间上节省了很多。
 #include "iostream"

 #include "cstdio"

 #include "cstring"

 #include "algorithm"

 #include "queue"

 #include "stack"

 #include "cmath"

 #include "utility"

 #include "map"

 #include "set"

 #include "vector"

 #include "list"

 #include "string"

 using namespace std;

 typedef long long ll;

 const int MOD = 1e9 + ;

 const int INF = 0x3f3f3f3f;

 const int MAXN = 1e5 + ;

 int n, m, num;

 int cost[MAXN], in[MAXN], out[MAXN], head[MAXN], dp[MAXN];

 bool vis[MAXN];

 struct node

 {

     /* data */

     int fr, to, nxt;

 }e[MAXN * ];

 void add(int x, int y)

 {

     e[num].fr = x;

     e[num].to = y;

     e[num].nxt = head[x];

     head[x] = num++;

 }

 void toposort()

 {

     int cnt = ;

     while(cnt < n) {

         for(int i = ; i <= n; ++i)

             if(in[i] ==  && !vis[i]) {

                 vis[i] = true;

                 cnt++;

                 for(int j = head[i]; j != -; j = e[j].nxt) {

                     int x = e[j].to;

                     in[x]--;

                     if(dp[i] + cost[x] > dp[x]) dp[x] = dp[i] + cost[x];

                 }

             }

     }

 }

 int main(int argc, char const *argv[])

 {

     while(scanf("%d%d", &n, &m) != EOF) {

         memset(in, , sizeof(in));

         memset(out, , sizeof(out));

         memset(head, -, sizeof(head));

         memset(vis, false, sizeof(vis));

         num = ;

         for(int i = ; i <= n; ++i)

             scanf("%d", &cost[i]);

         for(int i = ; i <= m; ++i) {

             int x, y;

             scanf("%d%d", &x, &y);

             add(x, y);

             in[y]++;

             out[x]++;

         }

         for(int i = ; i <= n; ++i)

             if(in[i] == ) dp[i] = cost[i];

             else dp[i] = -INF;

         toposort();

         int ans = -INF;

         for(int i = ; i <= n; ++i)

             if(out[i] ==  && dp[i] > ans) ans = dp[i];

         printf("%d\n", ans);

     }

     return ;

 }

代码转自(https://blog.csdn.net/gkhack/article/details/50223357)

 

POJ 3249 Test for Job(拓扑排序+dp优化空间)的更多相关文章

  1. POJ 3249 Test for Job (拓扑排序+DP)

    POJ 3249 Test for Job (拓扑排序+DP) <题目链接> 题目大意: 给定一个有向图(图不一定连通),每个点都有点权(可能为负),让你求出从源点走向汇点的路径上的最大点 ...

  2. POJ 3249 拓扑排序+DP

    貌似是道水题.TLE了几次.把所有的输入输出改成scanf 和 printf ,有吧队列改成了数组模拟.然后就AC 了.2333333.... Description: MR.DOG 在找工作的过程中 ...

  3. [NOIP2017]逛公园 最短路+拓扑排序+dp

    题目描述 给出一张 $n$ 个点 $m$ 条边的有向图,边权为非负整数.求满足路径长度小于等于 $1$ 到 $n$ 最短路 $+k$ 的 $1$ 到 $n$ 的路径条数模 $p$ ,如果有无数条则输出 ...

  4. 洛谷P3244 落忆枫音 [HNOI2015] 拓扑排序+dp

    正解:拓扑排序+dp 解题报告: 传送门 我好暴躁昂,,,怎么感觉HNOI每年总有那么几道题题面巨长啊,,,语文不好真是太心痛辣QAQ 所以还是要简述一下题意,,,就是说,本来是有一个DAG,然后后来 ...

  5. 【BZOJ-1194】潘多拉的盒子 拓扑排序 + DP

    1194: [HNOI2006]潘多拉的盒子 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 456  Solved: 215[Submit][Stat ...

  6. 【BZOJ5109】[CodePlus 2017]大吉大利,晚上吃鸡! 最短路+拓扑排序+DP

    [BZOJ5109][CodePlus 2017]大吉大利,晚上吃鸡! Description 最近<绝地求生:大逃杀>风靡全球,皮皮和毛毛也迷上了这款游戏,他们经常组队玩这款游戏.在游戏 ...

  7. bzoj1093[ZJOI2007]最大半连通子图(tarjan+拓扑排序+dp)

    Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u ...

  8. 【bzoj4011】[HNOI2015]落忆枫音 容斥原理+拓扑排序+dp

    题目描述 给你一张 $n$ 个点 $m$ 条边的DAG,$1$ 号节点没有入边.再向这个DAG中加入边 $x\to y$ ,求形成的新图中以 $1$ 为根的外向树形图数目模 $10^9+7$ . 输入 ...

  9. 【bzoj1093】[ZJOI2007]最大半连通子图 Tarjan+拓扑排序+dp

    题目描述 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:对于u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径. ...

随机推荐

  1. 2Python-DAY2模块

    1.模块 标准模块:不需要安装,可以直接导入的模块(库) 创建名为sys.py文件,执行该文件: import sys print(sys.path)打印环境变量 (python2中执行这个命令会报错 ...

  2. poj2243前一道题升级(思维构造+ac自动机)

    题:http://acm.hdu.edu.cn/showproblem.php?pid=2243 题意:给出m个模式串,求长度小于n的且存在模式串的字符串数有多少个(a~z) 分析:我们反着来,用总的 ...

  3. UML-SSD-为什么要画SSD?

    需求文本看着过于抽象,采用SSD一目了然. 在设计软件之前,分析人员会关注系统会发生那些事件? 1.基本上,软件系统要对以下3种事件进行响应: 1).来自于参与者(人或计算机)的外部事件 2).时间事 ...

  4. php中openssl_pkey_get_private()函数遇到false的问题 解决办法

    今天用openssl_pkey_get_private()函数遇到了一个大坑: 如果你的私钥文件(private_key.pem)是 -----BEGIN PRIVATE KEY-----字符串字符串 ...

  5. Django-rest framework框架的三大认证组件

    源码分析:三大认证组件的封装 组件的认证配置: 模型层:models.py class User(BaseModel): username = models.CharField(verbose_nam ...

  6. 实测两款 GitHub 开源抢票插件,所有坑都帮你踩过了

    如果你对自己手速和市面上的各种 “加速包” 都没什么信心的话,不妨试试用程序员的手段抢票? 况且,[12306 官方宣布屏蔽了一大批付费抢票软件],这也意味着你即使给这些软件付了会员费,也依旧抢不到票 ...

  7. nips2014下载

    nips2014下载 wget http://papers.nips.cc/book/advances-in-neural-information-processing-systems-27-2014 ...

  8. MongoDB 索引 .explain("executionStats")

    MongoDB干货系列2-MongoDB执行计划分析详解(3) http://www.mongoing.com/eshu_explain3 MongoDB之使用explain和hint性能分析和优化 ...

  9. debian下通过scp 上传下载文件

    1.上传本地文件到服务器 scp /path/filename username@servername:/path/ 2.从服务器上下载文件 scp username@servername:/path ...

  10. i春秋web作业2.25

    Web安全工程师(入门班) [全国线上入门班53期]课后作业   2020-2-25 DorinXL   请思考:XXE漏洞的原理的是什么?有哪些危害? XXE漏洞全称XML External Ent ...