题目

A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties: The lef subtree of a node contains only nodes with keys less than the node’s key. The right subtree of a node contains only nodes with keys greater than or equal to the node’s key. Both the lef and right subtrees must also be binary search trees. A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from lef to right. Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (<=1000). Then N distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.

Output Specification:

For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.

Sample Input:

10

1 2 3 4 5 6 7 8 9 0

Sample Output:

6 3 8 1 5 7 9 0 2 4

题目分析

已知完全二叉查找树的序列,求其层序序列

解题思路

思路 01

  1. 输入测试用例,升序排序即为二叉查找树的中序序列
  2. 中序序列递归建树(存储与数组i节点的子节点为2*i,2*i+1,root在1位置)(模拟递归中序遍历过程)
  3. 顺序打印数组即为层序序列

思路 02

  1. 输入测试用例,升序排序即为二叉查找树的中序序列
  2. 中序序列递归建树(存储与数组i节点的子节点为2i,2i+1,root在1位置)(找root的坐标k,将中序序列划分为startk-1左子树和k+1end右子树)
  3. 顺序打印数组即为层序序列

知识点

完全二叉查找树,任意节点序列建树

注:二叉查找树(不一定要完全二叉树)任意节点序列,升序排序,即为二叉查找树的中序序列

  1. 方式一:模拟递归打印中序序列的过程,将中序序列依次插入到数组建树
  2. 方式二:找root在中序序列中的位置k并将root保存到数组,递归处理startk-1左子树和k+1end右子树,完成建树
void inOrder(int root) { //root保存在1位置,index初始化为0
if(root>n) return;
inOrder(root*2);
CBT[root]=number[index++];
inOrder(root*2+1);
}
void getLevel(int start, int end, int index) {
if(start>end)return;
int n=end-start+1;
int l=log(n+1)/log(2);//最后一层的层数
int leave=n-(pow(2,l)-1); //最后一层叶子结点数
//pow(2, l - 1) - 1是除了root结点所在层和最后?层外,左?树的结点个数,pow(2, l - 1) 是l+1
//层最多拥有的属于根结点左?树的结点个数,min(pow(2, l - 1), leave)是最后?个结点真正拥有的
//属于根结点左?树上的结点个数
int root = start+(pow(2,l-1)-1)+min((int)pow(2,l-1),leave);
level[index]=in[root];
getLevel(start,root-1,2*index+1);
getLevel(root+1,end,2*index+2); }

Code

Code 01

#include <iostream>
#include <algorithm>
using namespace std;
const int maxn=1000;
int n,m;
int number[maxn],CBT[maxn],index=0;
void inOrder(int root) {
if(root>n) {
return;
}
inOrder(root*2);
CBT[root]=number[index++];
inOrder(root*2+1);
}
int main(int argc,char * argv[]) { scanf("%d",&n);
for(int i=0; i<n; i++) {
scanf("%d",&m);
number[i]=m;
}
// 递增排序--二叉查找树中序序列
sort(number,number+n);
inOrder(1);//根节点在1位置
for(int i=1; i<=n;i++) {
if(i!=1)printf(" ");
printf("%d",CBT[i]);
}
return 0;
}

Code 02

#include <iostream>
#include <vector>
#include <algorithm>
#include <cmath>
using namespace std;
vector<int> in,level;
void getLevel(int start, int end, int index) {
if(start>end)return;
int n=end-start+1;
int l=log(n+1)/log(2);//最后一层的层数
int leave=n-(pow(2,l)-1); //最后一层叶子结点数
//pow(2, l - 1) - 1是除了root结点所在层和最后?层外,左?树的结点个数,pow(2, l - 1) 是l+1
//层最多拥有的属于根结点左?树的结点个数,min(pow(2, l - 1), leave)是最后?个结点真正拥有的
//属于根结点左?树上的结点个数
int root = start+(pow(2,l-1)-1)+min((int)pow(2,l-1),leave);
level[index]=in[root];
getLevel(start,root-1,2*index+1);
getLevel(root+1,end,2*index+2); }
int main(int argc,char * argv[]) {
int n;
scanf("%d",&n);
in.resize(n);
level.resize(n);
for(int i=0; i<n; i++) {
scanf("%d",&in[i]);
}
sort(in.begin(),in.end());
getLevel(0,n-1,0);
printf("%d",level[0]);
for(int i=1; i<n; i++) {
printf(" %d",level[i]);
}
return 0;
}

PAT Advanced 1064 Complete Binary Search Tree (30) [⼆叉查找树BST]的更多相关文章

  1. PAT Advanced 1099 Build A Binary Search Tree (30) [⼆叉查找树BST]

    题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following proper ...

  2. pat 甲级 1064. Complete Binary Search Tree (30)

    1064. Complete Binary Search Tree (30) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHE ...

  3. PAT 甲级 1064 Complete Binary Search Tree (30 分)(不会做,重点复习,模拟中序遍历)

    1064 Complete Binary Search Tree (30 分)   A Binary Search Tree (BST) is recursively defined as a bin ...

  4. PAT Advanced 1043 Is It a Binary Search Tree (25) [⼆叉查找树BST]

    题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following proper ...

  5. 1064. Complete Binary Search Tree (30)【二叉树】——PAT (Advanced Level) Practise

    题目信息 1064. Complete Binary Search Tree (30) 时间限制100 ms 内存限制65536 kB 代码长度限制16000 B A Binary Search Tr ...

  6. PAT甲级:1064 Complete Binary Search Tree (30分)

    PAT甲级:1064 Complete Binary Search Tree (30分) 题干 A Binary Search Tree (BST) is recursively defined as ...

  7. PAT题库-1064. Complete Binary Search Tree (30)

    1064. Complete Binary Search Tree (30) 时间限制 100 ms 内存限制 32000 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHE ...

  8. pat 甲级 1064 ( Complete Binary Search Tree ) (数据结构)

    1064 Complete Binary Search Tree (30 分) A Binary Search Tree (BST) is recursively defined as a binar ...

  9. PAT 甲级 1064 Complete Binary Search Tree

    https://pintia.cn/problem-sets/994805342720868352/problems/994805407749357568 A Binary Search Tree ( ...

随机推荐

  1. C#最小化到托盘+双击托盘恢复+禁止运行多个该程序

    托盘程序的制作: 1.添加notifyIcon控件,并添加Icon,否则托盘没有图标(托盘右键菜单也可直接在属性里添加):2.响应Form的Resize或SizeChanged消息: // Hide ...

  2. window安装dlib、face_recognition

    face_recognition简介 face_recognition是Python的一个开源人脸识别库,支持Python 3.3+和Python 2.7.引用官网介绍: Recognize and ...

  3. 十六、React 渲染数据注意事项、以及react-router4.x中使用js跳转路由(登录成功自动跳转首页)

    一.React加载数据流程回顾 先看上一节的产品详情代码:https://blog.csdn.net/u010132177/article/details/103184176 [Pcontent.js ...

  4. php.laravel.部署

    Laravel 的部署 D  参考laravel-china的做 | 其他参考 | 重要的参考 | Nginx github | 如果想要ssl 啊

  5. STM32中ARM系列编译工具链的编译宏选择(__CC_ARM、__ICCARM__、__GNUC__、__TASKING__)

    一 前言 stm32 f103中.关系到一个选择何种编译宏的问题.这里就梳理一下吧. 二 正文 1  在 core_cm3.h 文件中,有如下代码: #if defined ( __CC_ARM ) ...

  6. 九十六、SAP中ALV事件之九,显示功能按钮栏中显示ALV加强工具栏

    一.排查了很久,终于找到问题所在.把问题解决了,代码如下: 二.运行效果如下 三.试一试,标准功能都可以用 完美

  7. Maven与nexus关系

    一.了解Maven,Maven用来干什么呢 1. 优秀的构建工具 通过简单的命令,能够完成清理.编译.测试.打包.部署等一系列过程.同时,不得不提的是,Maven是跨平台的,无论是在Windows.还 ...

  8. 基础语法-其它流程控制语句break和continue

    基础语法-其它流程控制语句break和continue 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.break语句 /** * break语句 * @author 尹正杰 * ...

  9. windows Driver 查询指定键值

    NTSTATUS status; HANDLE hKey = NULL; OBJECT_ATTRIBUTES oa; UNICODE_STRING strPath = RTL_CONSTANT_STR ...

  10. datetime使用

      通过当前日期,获取最近第一个周五.第二个周五.每季度末最后一个周五 def get_current_week(self, symbol: str, start_date: datetime): i ...