关于模板什么的还有算法的具体介绍 戳我 这里我们只做所有最短路的具体分析。

那么同是求解最短路,这些算法到底有什么区别和联系:

对于BFS来说,他没有松弛操作,他的理论思想是从每一点做树形便利,那么时间复杂度绝对是在大型图中难以接受的,所以BFS题目设计很精巧,数据限制,更重要的是他可以处理一些条件很麻烦的联通情况,比如在途中,每步长相同求到达某一地的时间,那么我们要用最短路,就需要建图,但是借助BFS就不需要建图,这么麻烦的事情了。

对于其他最短路,核心思想是松弛,那么先说Floyd,其核心思想是插点法松弛借助动态规划,这就是重点,那么既然是插点而且是动态规划,那么他就可以解决过某一点的最短最长路,或最什么什么的问题了,因为DP会不重复的枚举每一种情况,相当于插了尽可能的点,那么插点的问题就可以解决,比如不经过某一点的最短路问题,不经过超得过某个值的点的最短路。

对于最短路的其他算法,先讨论Ford家族,Bellman-Ford 与SPFA 的区别,emmm,名字不一样,速度不一样,但是使用情况都一样,都是可处理负边权,但是复杂度最恶劣为 O(V*E) 顶点数乘边数,那么稠密图直接挂掉。都能能判负环,Bellman是n-1次松弛之后如果还能松弛,那么就有负环,SPFA是若同一点进入队列两次,即为存在负环。Bellman时间复杂度为O(V*E) SPFA(队列优化的Bellman ford)复杂度为O(K*E) K为常数约为3,但是稠密图会退化到O(V*E)上面说了。

再说dijkstra,这个算法最快,稠密图稀疏图都可使用,也有一个队列优化版,区别参考上文,这个算法因为本身设计的问题是不可以处理负边权问题的,所以更不能处理负环,但他不会退化,这里我们比较晚异同,我们给出求解思路。

确定为单源最短路:这里是说如果是多源最短路,那么跑N边最短路也比Floyd快,也算是单源最短路。

1.判断是否为稠密图

①是:判断是否带负边权:有还是Ford算法,两个都可以,但是SPFA用的多,用它;

②否:SPFA;

多源最短路,或者就是Floyd算法的特殊问题。

Floyd ;

那么板子就可以只背3个了。

关于SPFA Bellman-Ford Dijkstra Floyd BFS最短路的共同点与区别的更多相关文章

  1. ACM/ICPC 之 最短路径-Bellman Ford范例(POJ1556-POJ2240)

    两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可 ...

  2. 最短路问题(Bellman/Dijkstra/Floyd)

    最短路问题(Bellman/Dijkstra/Floyd) 寒假了,继续学习停滞了许久的算法.接着从图论开始看起,之前觉得超级难的最短路问题,经过两天的苦读,终于算是有所收获.把自己的理解记录下来,可 ...

  3. 最短路径-Dijkstra+Floyd+Spfa

    Dijkstra算法: Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra ...

  4. poj1847 Tram(Dijkstra || Floyd || SPFA)

    题目链接 http://poj.org/problem?id=1847 题意 有n个车站,编号1~n,每个车站有k个出口,车站的出口默认是k个出口中的第一个,如果不想从默认出口出站,则需要手动选择出站 ...

  5. poj1860 bellman—ford队列优化 Currency Exchange

    Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22123   Accepted: 799 ...

  6. Bellman - Ford 算法解决最短路径问题

    Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...

  7. uva 558 - Wormholes(Bellman Ford判断负环)

    题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...

  8. 最短路径:Dijkstra & Floyd 算法图解,c++描述

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  9. Bellman—Ford算法思想

    ---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...

随机推荐

  1. Java中的垃圾回收算法详解

    一.前言   前段时间大致看了一下<深入理解Java虚拟机>这本书,对相关的基础知识有了一定的了解,准备写一写JVM的系列博客,这是第二篇.这篇博客就来谈一谈JVM中使用到的垃圾回收算法. ...

  2. buuctf misc wp 01

    buuctf misc wp 01 1.金三胖 2.二维码 3.N种方法解决 4.大白 5.基础破解 6.你竟然赶我走 1.金三胖 root@kali:~/下载/CTF题目# unzip 77edf3 ...

  3. 2019-06-02 Python之微信好友数据分析以及运用Pyecharts可视化

    一.库的使用说明 pass 二.微信好友信息的获取 def get_friends_info(self): #获取好像信息,返回lis列表 bot = Bot() lis = [['name', 'r ...

  4. Python中有许多HTTP客户端,但使用最广泛且最容易的是requests

    前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:北京尚脑软件测试 PS:如有需要Python学习资料的小伙伴可以加点击 ...

  5. CVE-2019-1388:Windows UAC 本地提权复现

    0x01 简介 用户帐户控制(User Account Control,简写作UAC)是微软公司在其Windows Vista及更高版本操作系统中采用的一种控制机制.其原理是通知用户是否对应用程序使用 ...

  6. MVC-路由解析

    MVC程序入口 Global.asax.cs 执行Application_Start 方法 *默认路由 *静态路由,访问链接只需要域名加路由url固定值就行了 *替换控制器,或方法名, *正则路由 方 ...

  7. js拼接php拼接

    当我们用到ajax的时候,局部替换的时候,我们可以在前台拼接,后台拼接,这个取决于你是前端后端这样拼接判断比较好, 判断不拼接,判断的值进行拼接  然后在html  替换 $.each 前台循环    ...

  8. uniqid用法

    uniqid():妙用就是以当前时间微妙为单位,返回的唯一ID 我们可以用到密码加密和接口加密的功能上,比如 $salt = substr(uniqid(rand()), -6);//截取倒数6位$p ...

  9. 2019-2020-1 20199303《Linux内核原理与分析》第五周作业

    系统调用的三层机制 API:第一层是指Libc中定义的API,这些API封装了系统调用,使用int 0x80触发一个系统调用中断:当然,并非所有的API都使用了系统调用,如完成数学加减运算的API就没 ...

  10. 如何给 Visual Studio 的输出程序添加版本信息

    出处:https://stackoverflow.com/questions/284258/how-do-i-set-the-version-information-for-an-existing-e ...