Description

Everybody in the Prime Land is using a prime base number system. In this system, each positive integer x is represented as follows: Let {pi}i=0,1,2,... denote the increasing sequence of all prime numbers. We know that x > 1 can be represented in only one way in the form of product of powers of prime factors. This implies that there is an integer kx and uniquely determined integers ekx, ekx-1, ..., e1, e0, (ekx > 0), that  The sequence

(ekx, ekx-1, ... ,e1, e0)

is considered to be the representation of x in prime base number system.

It is really true that all numerical calculations in prime base number system can seem to us a little bit unusual, or even hard. In fact, the children in Prime Land learn to add to subtract numbers several years. On the other hand, multiplication and division is very simple.

Recently, somebody has returned from a holiday in the Computer Land where small smart things called computers have been used. It has turned out that they could be used to make addition and subtraction in prime base number system much easier. It has been decided to make an experiment and let a computer to do the operation ``minus one''.

Help people in the Prime Land and write a corresponding program.

For practical reasons we will write here the prime base representation as a sequence of such pi and ei from the prime base representation above for which ei > 0. We will keep decreasing order with regard to pi.

Input

The input consists of lines (at least one) each of which except the last contains prime base representation of just one positive integer greater than 2 and less or equal 32767. All numbers in the line are separated by one space. The last line contains number 0.

Output

The output contains one line for each but the last line of the input. If x is a positive integer contained in a line of the input, the line in the output will contain x - 1 in prime base representation. All numbers in the line are separated by one space. There is no line in the output corresponding to the last ``null'' line of the input.

Sample Input

17 1
5 1 2 1
509 1 59 1
0

Sample Output

2 4
3 2
13 1 11 1 7 1 5 1 3 1 2 1

给你n的因数分解,乘起来然后,分解n-1

直接上重型武器

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <queue>
#include <stack>
#include <map>
#include <vector>
#include <string>
using namespace std;
typedef long long ll;
ll pr;
ll pmod(ll a, ll b, ll p) { return (a * b - (ll)((long double)a / p * b) * p + p) % p; } //普通的快速乘会T
ll gmod(ll a, ll b, ll p)
{
ll res = 1;
while (b)
{
if (b & 1)
res = pmod(res, a, p);
a = pmod(a, a, p);
b >>= 1;
}
return res;
}
inline ll gcd(ll a, ll b)
{ //听说二进制算法特快
if (!a)
return b;
if (!b)
return a;
int t = __builtin_ctzll(a | b);
a >>= __builtin_ctzll(a);
do
{
b >>= __builtin_ctzll(b);
if (a > b)
{
ll t = b;
b = a, a = t;
}
b -= a;
} while (b);
return a << t;
}
bool Miller_Rabin(ll n)
{
if (n == 46856248255981ll || n < 2)
return false; //强伪素数
if (n == 2 || n == 3 || n == 7 || n == 61 || n == 24251)
return true;
if (!(n & 1) || !(n % 3) || !(n % 61) || !(n % 24251))
return false;
ll m = n - 1, k = 0;
while (!(m & 1))
k++, m >>= 1;
for (int i = 1; i <= 20; ++i) // 20为Miller-Rabin测试的迭代次数
{
ll a = rand() % (n - 1) + 1, x = gmod(a, m, n), y;
for (int j = 1; j <= k; ++j)
{
y = pmod(x, x, n);
if (y == 1 && x != 1 && x != n - 1)
return 0;
x = y;
}
if (y != 1)
return 0;
}
return 1;
}
ll _abs(ll a){
if(a>=0) return a;
else return -a;
}
ll Pollard_Rho(ll x)
{
ll n = 0, m = 0, t = 1, q = 1, c = rand() % (x - 1) + 1;
for (ll k = 2;; k <<= 1, m = n, q = 1)
{
for (ll i = 1; i <= k; ++i)
{
n = (pmod(n, n, x) + c) % x;
q = pmod(q, _abs(m - n), x);
}
t = gcd(x, q);
if (t > 1)
return t;
}
}
map<long long, int> m;
void fid(ll n)
{
if (n == 1)
return;
if (Miller_Rabin(n))
{
pr = max(pr, n);
m[n]++;
return;
}
ll p = n;
while (p >= n)
p = Pollard_Rho(p);
fid(p);
fid(n / p);
}
int main()
{
ll n, a;
int b;
while (1)
{
n = 1;
while (true)
{
scanf("%lld", &a);
if (a == 0)
return 0;
char c = getchar();
if (c == '\n')
break;
scanf("%d", &b);
c = getchar();
for (int i = 1; i <= b; i++)
n *= a;
if (c == '\n')
break;
}
n--;
m.clear();
pr = 0;
fid(n);
for (map<long long, int>::iterator c = m.end(); c != m.begin();)
{
--c;
printf("%lld %d ", c->first, c->second);
}
puts(" ");
}
return 0;
}

数学--数论--POJ1365——Prime Land的更多相关文章

  1. [暑假集训--数论]poj1365 Prime Land

    Everybody in the Prime Land is using a prime base number system. In this system, each positive integ ...

  2. POJ1365 - Prime Land(质因数分解)

    题目大意 给定一个数的质因子表达式,要求你计算机它的值,并减一,再对这个值进行质因数分解,输出表达式 题解 预处理一下,线性筛法筛下素数,然后求出值来之后再用筛选出的素数去分解....其实主要就是字符 ...

  3. POJ1365 Prime Land【质因数分解】【素数】【水题】

    题目链接: http://poj.org/problem?id=1365 题目大意: 告诉你一个数的质因数x的全部底数pi和幂ei.输出x-1的质因数的全部底数和幂 解题思路: 这道题不难.可是题意特 ...

  4. POJ 1365 Prime Land(数论)

    题目链接: 传送门 Prime Land Time Limit: 1000MS     Memory Limit: 10000K Description Everybody in the Prime ...

  5. [POJ 1365] Prime Land

    Prime Land Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 3211   Accepted: 1473 Descri ...

  6. 数学--数论--HDU2136 Largest prime factor 线性筛法变形

    Problem Description Everybody knows any number can be combined by the prime number. Now, your task i ...

  7. pku1365 Prime Land (数论,合数分解模板)

    题意:给你一个个数对a, b 表示ab这样的每个数相乘的一个数n,求n-1的质数因子并且每个指数因子k所对应的次数 h. 先把合数分解模板乖乖放上: ; ans != ; ++i) { ) { num ...

  8. NOIP复习之1 数学数论

    noip一轮复习真的要开始啦!!! 大概顺序是这样的 1.数学 2.搜索贪心 3.数据结构 4.图论 5.dp 6.其他 数学 1.数论 数论被称为数学皇冠上的明珠,他的重要性主要在于它是其他学习的祖 ...

  9. Prime Land

    http://poj.org/problem?id=1365 题意:给定一个数字n的拆分形式,然后让你求解n-1的值: 解析:直接爆搞 // File Name: poj1365.cpp // Aut ...

随机推荐

  1. Serverless无服务器云函数入门唠叨

    B站录了个视频: https://www.bilibili.com/video/av59020925/

  2. Java第三十一天,用Properties集合操作IO

    一.Properties 这个类是线程安全的:多个线程可以共享一个Properties对象,而不需要外部同步 1.常用方法 Object setProperty(String key, String ...

  3. Array(数组)对象-->数组遍历

    1.数组的遍历: 方法1:使用for循环语句 /*定义数组*/ var arr=[1,2,3,4,5]; /*遍历*/ for (var i = 0;i<arr.length;i++){ con ...

  4. matplotlib Transform

    2020-04-09 15:09:02 -- Edit by yangray Transform 类是TransformNode的子类,它是所有执行变换的TransformNode的实例的基类.所有非 ...

  5. hadoop(五)scp命令copy文件和配置(完全分布式准备二)|7

    机器的克隆参考centos7克隆ip|机器名|映射关系|别名配置(hadoop完全分布式准备一) 那么问题来了,如果我们有30台机器,之间可以互相访问,那我们如何快速安装配置环境如jdk hadoop ...

  6. 一个lock锁就可以分出低中高水平的程序员对问题的处置方式

    说到lock锁,我相信在座的各位没有不会用的,而且还知道怎么用不会出错,但让他们聊一聊为什么可以锁住,都说人以群分,大概就有了下面低中高水平的三类人吧. 第一类人 将lock对象定义成static,这 ...

  7. 使用基于vuecli创建的目录推送到指定远程分支

    笔者使用vuecli创建项目目录以后,在想将该目录提交到远程仓库时发现行不通,在忙活了一下午以后写下此文 1.github上新建一空分支,然后克隆该分支地址:  https://github.com/ ...

  8. http的请求头都有那些信息

    每个HTTP请求和响应都会带有相应的头部信息.默认情况下,在发送XHR请求的同时,还会发送下列头部信息: Accept:浏览器能够处理的内容类型 Accept-Charset:浏览器能够显示的字符集 ...

  9. 不错的spring学习博客

    http://blog.csdn.net/xyh820/article/details/7303330/

  10. ThinkPHP6.0学习笔记-验证器

    验证器 By:Mirror王宇阳 验证器定义 验证器的使用,必须定义它:系统提供了一条命令直接生产一个验证器类: php think make:validate User 自动再应用目录下生成一个va ...