Description

Everybody in the Prime Land is using a prime base number system. In this system, each positive integer x is represented as follows: Let {pi}i=0,1,2,... denote the increasing sequence of all prime numbers. We know that x > 1 can be represented in only one way in the form of product of powers of prime factors. This implies that there is an integer kx and uniquely determined integers ekx, ekx-1, ..., e1, e0, (ekx > 0), that  The sequence

(ekx, ekx-1, ... ,e1, e0)

is considered to be the representation of x in prime base number system.

It is really true that all numerical calculations in prime base number system can seem to us a little bit unusual, or even hard. In fact, the children in Prime Land learn to add to subtract numbers several years. On the other hand, multiplication and division is very simple.

Recently, somebody has returned from a holiday in the Computer Land where small smart things called computers have been used. It has turned out that they could be used to make addition and subtraction in prime base number system much easier. It has been decided to make an experiment and let a computer to do the operation ``minus one''.

Help people in the Prime Land and write a corresponding program.

For practical reasons we will write here the prime base representation as a sequence of such pi and ei from the prime base representation above for which ei > 0. We will keep decreasing order with regard to pi.

Input

The input consists of lines (at least one) each of which except the last contains prime base representation of just one positive integer greater than 2 and less or equal 32767. All numbers in the line are separated by one space. The last line contains number 0.

Output

The output contains one line for each but the last line of the input. If x is a positive integer contained in a line of the input, the line in the output will contain x - 1 in prime base representation. All numbers in the line are separated by one space. There is no line in the output corresponding to the last ``null'' line of the input.

Sample Input

17 1
5 1 2 1
509 1 59 1
0

Sample Output

2 4
3 2
13 1 11 1 7 1 5 1 3 1 2 1

给你n的因数分解,乘起来然后,分解n-1

直接上重型武器

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <queue>
#include <stack>
#include <map>
#include <vector>
#include <string>
using namespace std;
typedef long long ll;
ll pr;
ll pmod(ll a, ll b, ll p) { return (a * b - (ll)((long double)a / p * b) * p + p) % p; } //普通的快速乘会T
ll gmod(ll a, ll b, ll p)
{
ll res = 1;
while (b)
{
if (b & 1)
res = pmod(res, a, p);
a = pmod(a, a, p);
b >>= 1;
}
return res;
}
inline ll gcd(ll a, ll b)
{ //听说二进制算法特快
if (!a)
return b;
if (!b)
return a;
int t = __builtin_ctzll(a | b);
a >>= __builtin_ctzll(a);
do
{
b >>= __builtin_ctzll(b);
if (a > b)
{
ll t = b;
b = a, a = t;
}
b -= a;
} while (b);
return a << t;
}
bool Miller_Rabin(ll n)
{
if (n == 46856248255981ll || n < 2)
return false; //强伪素数
if (n == 2 || n == 3 || n == 7 || n == 61 || n == 24251)
return true;
if (!(n & 1) || !(n % 3) || !(n % 61) || !(n % 24251))
return false;
ll m = n - 1, k = 0;
while (!(m & 1))
k++, m >>= 1;
for (int i = 1; i <= 20; ++i) // 20为Miller-Rabin测试的迭代次数
{
ll a = rand() % (n - 1) + 1, x = gmod(a, m, n), y;
for (int j = 1; j <= k; ++j)
{
y = pmod(x, x, n);
if (y == 1 && x != 1 && x != n - 1)
return 0;
x = y;
}
if (y != 1)
return 0;
}
return 1;
}
ll _abs(ll a){
if(a>=0) return a;
else return -a;
}
ll Pollard_Rho(ll x)
{
ll n = 0, m = 0, t = 1, q = 1, c = rand() % (x - 1) + 1;
for (ll k = 2;; k <<= 1, m = n, q = 1)
{
for (ll i = 1; i <= k; ++i)
{
n = (pmod(n, n, x) + c) % x;
q = pmod(q, _abs(m - n), x);
}
t = gcd(x, q);
if (t > 1)
return t;
}
}
map<long long, int> m;
void fid(ll n)
{
if (n == 1)
return;
if (Miller_Rabin(n))
{
pr = max(pr, n);
m[n]++;
return;
}
ll p = n;
while (p >= n)
p = Pollard_Rho(p);
fid(p);
fid(n / p);
}
int main()
{
ll n, a;
int b;
while (1)
{
n = 1;
while (true)
{
scanf("%lld", &a);
if (a == 0)
return 0;
char c = getchar();
if (c == '\n')
break;
scanf("%d", &b);
c = getchar();
for (int i = 1; i <= b; i++)
n *= a;
if (c == '\n')
break;
}
n--;
m.clear();
pr = 0;
fid(n);
for (map<long long, int>::iterator c = m.end(); c != m.begin();)
{
--c;
printf("%lld %d ", c->first, c->second);
}
puts(" ");
}
return 0;
}

数学--数论--POJ1365——Prime Land的更多相关文章

  1. [暑假集训--数论]poj1365 Prime Land

    Everybody in the Prime Land is using a prime base number system. In this system, each positive integ ...

  2. POJ1365 - Prime Land(质因数分解)

    题目大意 给定一个数的质因子表达式,要求你计算机它的值,并减一,再对这个值进行质因数分解,输出表达式 题解 预处理一下,线性筛法筛下素数,然后求出值来之后再用筛选出的素数去分解....其实主要就是字符 ...

  3. POJ1365 Prime Land【质因数分解】【素数】【水题】

    题目链接: http://poj.org/problem?id=1365 题目大意: 告诉你一个数的质因数x的全部底数pi和幂ei.输出x-1的质因数的全部底数和幂 解题思路: 这道题不难.可是题意特 ...

  4. POJ 1365 Prime Land(数论)

    题目链接: 传送门 Prime Land Time Limit: 1000MS     Memory Limit: 10000K Description Everybody in the Prime ...

  5. [POJ 1365] Prime Land

    Prime Land Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 3211   Accepted: 1473 Descri ...

  6. 数学--数论--HDU2136 Largest prime factor 线性筛法变形

    Problem Description Everybody knows any number can be combined by the prime number. Now, your task i ...

  7. pku1365 Prime Land (数论,合数分解模板)

    题意:给你一个个数对a, b 表示ab这样的每个数相乘的一个数n,求n-1的质数因子并且每个指数因子k所对应的次数 h. 先把合数分解模板乖乖放上: ; ans != ; ++i) { ) { num ...

  8. NOIP复习之1 数学数论

    noip一轮复习真的要开始啦!!! 大概顺序是这样的 1.数学 2.搜索贪心 3.数据结构 4.图论 5.dp 6.其他 数学 1.数论 数论被称为数学皇冠上的明珠,他的重要性主要在于它是其他学习的祖 ...

  9. Prime Land

    http://poj.org/problem?id=1365 题意:给定一个数字n的拆分形式,然后让你求解n-1的值: 解析:直接爆搞 // File Name: poj1365.cpp // Aut ...

随机推荐

  1. Redis对象——集合(Set)

    集合类型 (Set) 是一个无序并唯一的键值集合.它的存储顺序不会按照插入的先后顺序进行存储. 集合类型和列表类型的区别如下: 列表可以存储重复元素,集合只能存储非重复元素: 列表是按照元素的先后顺序 ...

  2. spring08

    这里主要学习的是关于spring之后中与ioc不同的aop技术:面向切面编程是spring基石之一: 解决代码混乱文体,代码分散,当部分修改时,要逐个修改当更多的日志以及验证介入之后会使代码变得更加的 ...

  3. django中写分页

    1.引用函数import from django.core.paginator import Paginator 2.分页 page_obj = Paginator(Article.objects.a ...

  4. Java Random 随机数

    package myrandom; import java.util.Random; /* * Random:用于产生随机数 * * 使用步骤: * A:导包 * import java.util.R ...

  5. BMI的Python实现

    str1 = float(input('请输入您的身高(单位:米):')) # input默认转化为字符串型 用float转化为浮点型 str2 = float(input('请输入您的体重(单位:千 ...

  6. Tomcat5的web应用启动顺序详解

    Tomcat5的web应用启动顺序详解 [收藏此页] [打印]   作者:佚名  2007-07-17 内容导航: 第1页   [IT168技术文档]摘要: 应用Tomcat对于我们来讲实在是司空见惯 ...

  7. ActiveMQ支持的消息协议

    ActiveMQ支持哪些协议 ActiveMQ支持多种协议传输和传输方式,允许客户端使用多种协议连接ActiveMQ支持的协议:AUTO,OpenWire,AMQP,Stomp,MQTT等Active ...

  8. 遇到自己喜欢的视频无法下载,python帮你解决

    问题描述 python是一种非常好用的爬虫工具.对于大多数的爬虫小白来说,python是更加简洁,高效的代码.今天就用实际案例讲解如何爬取动态的网站视频. 环境配置:python3:爬虫库reques ...

  9. Laravel路由不生效,除了首页全部404解决方案Nginx环境

    原因: 请求根目录/ (http://www.xxx.com/public/),会请求public/index.php 输入其他路由地址时,会把你的请求定位到:http://www.xxx.com/i ...

  10. 全网最全最细的jmeter接口测试教程以及接口测试流程详解

    一.Jmeter简介 ​ Jmeter是由Apache公司开发的一个纯Java的开源项目,即可以用于做接口测试也可以用于做性能测试. Jmeter具备高移植性,可以实现跨平台运行. Jmeter可以实 ...